788 research outputs found
Literature-based discovery of diabetes- and ROS-related targets
Abstract Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.http://deepblue.lib.umich.edu/bitstream/2027.42/78315/1/1755-8794-3-49.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/2/1755-8794-3-49-S7.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/3/1755-8794-3-49-S10.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/4/1755-8794-3-49-S8.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/5/1755-8794-3-49-S3.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/6/1755-8794-3-49-S1.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/7/1755-8794-3-49-S4.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/8/1755-8794-3-49-S2.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/9/1755-8794-3-49-S12.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/10/1755-8794-3-49-S11.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/11/1755-8794-3-49-S9.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/12/1755-8794-3-49-S5.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/13/1755-8794-3-49-S6.XLShttp://deepblue.lib.umich.edu/bitstream/2027.42/78315/14/1755-8794-3-49.pdfPeer Reviewe
The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols
It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols
Predicting RF Signal Degradation Through the Hypersonic Plasma Sheath Using dsmcFoam and PIC Method
The transmission and degradation of RF signals through the plasma sheath surrounding hypersonic vehicles is investigated using a DSMC flow solver method. The OpenFoam library dsmcFoam is used to simulate flow around hypersonic bodies and obtain flow field properties to aid in calculations of signal degradation. The study of RF signal degradation and the viability of communications for hypersonic vehicles is of supreme importance for the future of aerospace as hypersonic travel and warfare is becoming technologically possible. Integrating over the output electron number density profile yields values for attenuation that drop below 100 decibels in the transmission window of 10 to 30 GHz. In this window, phase shift values remain between 2 and 10 radians. Outside of this transmission window, attenuation and phase shift are high and indicate poor chance of viable communications. If signal degradation models can be verified and improved with wind tunnel and flight data, these results suggest that vital radar and satellite communications are possible through the plasma sheath and can be decoded using accurately predicted degradation values
Application of Direct Simulation Monte Carlo Method to Computation of RF Signal Degradation During Hypersonic Flight
In order to further understand the hypersonic blackout problem, the first step is to investigate models to quantify signal degradation and begin implementing these models to representative plasma sheath and flow data. This research is the first attempt at implementing a model to predict RF signal degradation through the plasma sheath surrounding the hypersonic air vehicle. The investigation is performed using a Direct Simulation Monte Carlo (DSMC) based flow solver. The dsmcFoam solver in the OpenFoam library is used to simulate the flow around hypersonic bodies to obtain flow field properties, most importantly the electron number density profile, to aid in the calculations of signal degradation. The study of viability of RF communications from hypersonic, fixed-wing aircraft are paramount to the future of hypersonic military capabilities and even hypersonic travel. Predicting signal degradation for a transmission along a line of sight in real-time can eliminate radio blackout by guiding the gain models on the signal decoding side and allowing reconstruction of the transmission. Even without reconstruction, accurately predicting when signals will be unrecoverable can serve as an indicator for a hypersonic vehicle to send communications to a different ground station or satellite. The integration method employed to integrate over the output electron number density profile yields values for attenuation that drop below 100 decibels in the transmission window of 10 to 30 GHz. Outside of this transmission window, attenuation and phase shift are high indicating poor chance of viable communication. If signal degradation models can be verified and improved with the flight data in the future, these results suggest that vital radar and satellite communications are possible through the plasma sheath and can be decoded using accurately predicted degradation values
SalmoNet, an integrated network of ten Salmonella enterica strains reveals common and distinct pathways to host adaptation
Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org
Long-Term Outcomes of Diabetic Patients With Critical Limb Ischemia Followed in a Tertiary Referral Diabetic Foot Clinic
We describe the long-term outcomes of 510 diabetic patients with critical limb ischemia (CLI) and an active foot ulcer or gangrene, seen at the University Hospital of Rome Tor Vergata, a tertiary care clinic
Molecular bases of diabetic nephropathy
The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)HC Instituto do Coração Unidade de HipertensãoUSP FMUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Laboratório de NefrologiaFundação Universitária de Cardiologia Instituto de Cardiologia Laboratório de Cardiologia Molecular e CelularUNIFESP, EPM, Laboratório de NefrologiaSciEL
Molecular mechanisms of diabetic renal hypertrophy
Molecular mechanisms of diabetic renal hypertrophy. Altered growth of renal cells is one of the early abnormalities detected after the onset of diabetes. Cell culture studies whereby renal cells are exposed to high glucose concentrations have provided a considerable amount of insight into mechanisms of growth. In the glomerular compartment, there is a very early and self-limited proliferation of mesangial cells with subsequent hypertrophy, whereas proximal tubular cells primarily undergo hypertrophy. There is overwhelming evidence from in vivo and cell culture studies that induction of the transforming growth factor-βbgr; (TGF-βbgr;) system mediates the actions of high ambient glucose and that this system is pivotal for the hypertrophy of mesangial and tubular cells. Other factors such as hemodynamic forces, protein glycation products, and several mediators (for example, angiotensin II, endothelin-1, thromboxane, and platelet-derived growth factor) may further amplify the synthesis of TGF-βbgr; and/or the expression of its receptors in the diabetic state. Cellular hypertrophy can be characterized by cell cycle arrest in the G1 phase. The molecular mechanism arresting mesangial cells in the G1 phase of the cell cycle is the induction of cyclin-dependent kinase (CdK) inhibitors such as p27Kip1 and p21, which bind to and inactivate cyclin-CdK complexes responsible for G1-phase exit. High-glucose–induced activation of protein kinase C and stimulated TGF-βbgr; expression appear to be essential for stimulated expression of p27Kip1. In addition, a decreased turnover of protein caused by the inhibition of proteases contributes to hypertrophy. The development of irreversible renal changes in diabetes mellitus such as glomerulosclerosis and tubulointerstitial fibrosis is always preceded by the early hypertrophic processes in the glomerular and the tubular compartments. It may still be debated whether diabetic renal hypertrophy will inevitably lead to irreversible fibrotic changes in the absence of other factors such as altered intraglomerular hemodynamics and genetic predisposition. Nevertheless, understanding cellular growth on a molecular level may help design a novel therapeutic approach to prevent or treat diabetic nephropathy effectively
- …
