900 research outputs found

    Fermion Density Induced Instability of the W-Boson Pair Condensate in Strong Magnetic Field

    Full text link
    The electroweak vacuum structure in an external magnetic field close to the lower critical value is considered at finite fermion density. It is shown that the leading effect of the fermions is to reduce the symmetry of the W-pair condensate in the direction of the magnetic field. The energy is minimized by the appearance of a helicoidal structure of the condensate along the magnetic field.Comment: 9 pages, LaTex, JHU-TIPAC-93000

    Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate

    Full text link
    We calculate the effect of the interaction between an optically active material and a Bose-Einstein condensate on the collective oscillations of the condensate. We provide explicit expressions for the frequency shift of the center of mass oscillation in terms of the potential generated by the substrate and of the density profile of the gas. The form of the potential is discussed in details and various regimes (van der Waals-London, Casimir-Polder and thermal regimes) are identified as a function of the distance of atoms from the surface. Numerical results for the frequency shifts are given for the case of a sapphire dielectric substrate interacting with a harmonically trapped condensate of 87^{87}Rb atoms. We find that at distances of 48μm4-8 \mu m, where thermal effects become visible, the relative frequency shifts produced by the substrate are of the order 10410^{-4} and hence accessible experimentally. The effects of non linearities due to the finite amplitude of the oscillation are explicitly discussed. Predictions are also given for the radial breathing mode.Comment: 28 pages, 10 figures. Submitted to PR

    On finite-density QCD at large Nc

    Full text link
    Deryagin, Grigoriev, and Rubakov (DGR) have shown that in finite-density QCD at infinite Nc the Fermi surface is unstable with respect to the formation of chiral waves with wavenumber twice the Fermi momentum, while the BCS instability is suppressed. We show here that at large, but finite Nc, the DGR instability only occurs in a finite window of chemical potentials from above Lambda_QCD to mu_critical = exp(gamma ln^2 Nc + O(ln Nc ln ln Nc))Lambda_QCD, where gamma = 0.02173. Our analysis shows that, at least in the perturbative regime, the instability occurs only at extremely large Nc, Nc > 1000 Nf, where Nf is the number of flavors. We conclude that the DGR instability is not likely to occur in QCD with three colors, where the ground state is expected to be a color superconductor. We speculate on possible structure of the ground state of finite-density QCD with very large Nc.Comment: 13 pages, 5 figures, 3 figures drawn using PicTe

    A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    Full text link
    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which ultimately controls the momentum exchange between solid and fluid phases. This approach allows us to effectively vary the slip length for a given wettability (i.e. the static contact angle) of the solid substrate

    Mapping the QCD Phase Diagram

    Get PDF
    I review recent theoretical developments which show how a key qualitative feature of the QCD phase diagram, namely a critical point which in a sense defines the landscape which heavy ion collision experiments are seeking to map, can be discovered. The map of the phase diagram which I sketch is based on reasonable inference from universality, lattice gauge theory and models; the discovery of the critical point would provide an experimental foundation for the central qualitative feature of the landscape. I also review recent progress in our understanding of cold, dense quark matter, as may occur in the cores of neutron stars. In this regime, quarks form Cooper pairs. The formation of such superconducting phases requires only weak attractive interactions, as provided by one-gluon exchange at asymptotically high density; these phases may nevertheless break chiral symmetry (by locking flavor symmetries to color symmetry) and may have excitations which are indistinguishable from those in a confined phase. Mapping this part of the phase diagram will require a better understanding of how the presence of color superconductivity and color-flavor locking affects neutron star phenomenology.Comment: Contribution to proceedings of Quark Matter '99, Torino, Italy. 12 pages. 4 figure

    A chiral crystal in cold QCD matter at intermediate densities?

    Full text link
    The analogue of Overhauser (particle-hole) pairing in electronic systems (spin-density waves with non-zero total momentum QQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the color-superconducting BCS ground state (particle-particle pairing, QQ=0). The calculations are based on effective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-isoscalar quark-hole ('σ\sigma') channel. Within the Nambu-Gorkov formalism we set up the coupled channel problem including multiple chiral density wave formation, and evaluate the resulting gaps and free energies. Employing medium-modified instanton-induced 't Hooft interactions, as applicable around μq0.4\mu_q\simeq 0.4 GeV (or 4 times nuclear saturation density), we find the 'chiral crystal phase' to be competitive with the color superconductor.Comment: 14 pages ReVTeX, including 11 ps-/eps-figure

    Fermion Condensates of massless QED2QED_2 at Finite Density in non-trivial Topological Sectors

    Full text link
    Vacuum expectation values of products of local bilinears ψˉψ\bar\psi\psi are computed in massless QED2QED_2 at finite density. It is shown that chiral condensates exhibit an oscillatory inhomogeneous behaviour depending on the chemical potential. The use of a path-integral approach clarifies the connection of this phenomenon with the topological structure of the theory.Comment: 16 pages, no figures, To be published in Phys.Rev.

    Hard Loops, Soft Loops, and High Density Effective Field Theory

    Full text link
    We study several issues related to the use of effective field theories in QCD at large baryon density. We show that the power counting is complicated by the appearance of two scales inside loop integrals. Hard dense loops involve the large scale μ2\mu^2 and lead to phenomena such as screening and damping at the scale gμg\mu. Soft loops only involve small scales and lead to superfluidity and non-Fermi liquid behavior at exponentially small scales. Four-fermion operators in the effective theory are suppressed by powers of 1/μ1/\mu, but they get enhanced by hard loops. As a consequence their contribution to the pairing gap is only suppressed by powers of the coupling constant, and not powers of 1/μ1/\mu. We determine the coefficients of four-fermion operators in the effective theory by matching quark-quark scattering amplitudes. Finally, we introduce a perturbative scheme for computing corrections to the gap parameter in the superfluid phaseComment: 26 page
    corecore