77 research outputs found

    Optimal quantization and power allocation for energy-based distributed sensor detection

    Get PDF
    We consider the decentralized detection of an unknown deterministic signal in a spatially uncorrelated distributed wireless sensor network. N samples from the signal of interest are gathered by each of the M spatially distributed sensors, and the energy is estimated by each sensor. The sensors send their quantized information over orthogonal channels to the fusion center (FC) which linearly combines them and makes a final decision. We show how by maximizing the modified deflection coefficient we can calculate the optimal transmit power allocation for each sensor and the optimal number of quantization bits to match the channel capacity

    Distributed binary event detection under data-falsification and energy-bandwidth limitation

    Get PDF
    We address the problem of centralized detection of a binary event in the presence of falsifiable sensor nodes (SNs) (i.e., controlled by an attacker) for a bandwidth-constrained under-attack spatially uncorrelated distributed wireless sensor network (WSN). The SNs send their quantized test statistics over orthogonal channels to the fusion center (FC), which linearly combines them to reach a final decision. First (considering that the FC and the attacker do not act strategically), we derive (i) the FC optimal weight combining; (ii) the optimal SN to FC transmit power, and (iii) the test statistic quantization bits that maximize the probability of detection (Pd). We also derive an expression for the attacker strategy that causes the maximum possible FC degradation. But in these expressions, both the optimum FC strategy and the attacker strategy require

    White noise reduction for wideband linear array signal processing

    Get PDF
    The performance of wideband array signal processing algorithms is dependent on the noise level in the system. A method is proposed for reducing the level of white noise in wideband linear arrays via a judiciously designed spatial transformation followed by a bank of highpass filters. A detailed analysis of the method and its effect on the spectrum of the signal and noise is presented. The reduced noise level leads to a higher signal to noise ratio (SNR) for the system, which can have a significant beneficial effect on the performance of various beamforming methods and other array signal processing applications such as direction of arrival (DOA) estimation. Here we focus on the beamforming problem and study the improved performance of two well-known beamformers, namely the reference signal based (RSB) and the linearly constrained minimum variance (LCMV) beamformers. Both theoretical analysis and simulation results are provided

    Performance Analysis of UAV Enabled Disaster Recovery Networks: A Stochastic Geometric Framework Based on Cluster Processes

    Get PDF
    In this paper, we develop a comprehensive statistical framework to characterize and model large-scale unmanned aerial vehicle-enabled post-disaster recovery cellular networks. In the case of natural or man-made disasters, the cellular network is vulnerable to destruction resulting in coverage voids or coverage holes. Drone-based small cellular networks (DSCNs) can be rapidly deployed to fill such coverage voids. Due to capacity and back-hauling limitations on drone small cells (DSCs), each coverage hole requires a multitude of DSCs to meet the shortfall coverage at a desired quality-of-service. Moreover, ground users also tend to cluster in hot-spots in a post-disaster scenario. Motivated by this fact, we consider the clustered deployment of DSCs around the site of a destroyed BS. Joint consideration partially operating BSs and deployed DSCs yields a unique topology for such public safety networks. Borrowing tools from stochastic geometry, we develop a statistical framework to quantify the down-link performance of a DSCN. Our proposed clustering mechanism extends the traditional Matern and Thomas cluster processes to a more general case, where cluster size is dependent upon the size of the coverage hole. We then employ the newly developed framework to find closed-form expressions (later verified by Monte-Carlo simulations) to quantify the coverage probability, area spectral efficiency, and the energy efficiency for the down-link mobile user. Finally, we explore several design parameters (for both of the adopted cluster processes) that address optimal deployment of the network (i.e., number of drones per cluster, drone altitudes, and transmit power ratio between the traditional surviving base stations and the drone base stations)

    Decentralized Federated Learning on the Edge over Wireless Mesh Networks

    Full text link
    The rapid growth of Internet of Things (IoT) devices has generated vast amounts of data, leading to the emergence of federated learning as a novel distributed machine learning paradigm. Federated learning enables model training at the edge, leveraging the processing capacity of edge devices while preserving privacy and mitigating data transfer bottlenecks. However, the conventional centralized federated learning architecture suffers from a single point of failure and susceptibility to malicious attacks. In this study, we delve into an alternative approach called decentralized federated learning (DFL) conducted over a wireless mesh network as the communication backbone. We perform a comprehensive network performance analysis using stochastic geometry theory and physical interference models, offering fresh insights into the convergence analysis of DFL. Additionally, we conduct system simulations to assess the proposed decentralized architecture under various network parameters and different aggregator methods such as FedAvg, Krum and Median methods. Our model is trained on the widely recognized EMNIST dataset for benchmarking handwritten digit classification. To minimize the model's size at the edge and reduce communication overhead, we employ a cutting-edge compression technique based on genetic algorithms. Our simulation results reveal that the compressed decentralized architecture achieves performance comparable to the baseline centralized architecture and traditional DFL in terms of accuracy and average loss for our classification task. Moreover, it significantly reduces the size of shared models over the wireless channel by compressing participants' local model sizes to nearly half of their original size compared to the baselines, effectively reducing complexity and communication overhead

    FLCC: Efficient Distributed Federated Learning on IoMT over CSMA/CA

    Full text link
    Federated Learning (FL) has emerged as a promising approach for privacy preservation, allowing sharing of the model parameters between users and the cloud server rather than the raw local data. FL approaches have been adopted as a cornerstone of distributed machine learning (ML) to solve several complex use cases. FL presents an interesting interplay between communication and ML performance when implemented over distributed wireless nodes. Both the dynamics of networking and learning play an important role. In this article, we investigate the performance of FL on an application that might be used to improve a remote healthcare system over ad hoc networks which employ CSMA/CA to schedule its transmissions. Our FL over CSMA/CA (FLCC) model is designed to eliminate untrusted devices and harness frequency reuse and spatial clustering techniques to improve the throughput required for coordinating a distributed implementation of FL in the wireless network. In our proposed model, frequency allocation is performed on the basis of spatial clustering performed using virtual cells. Each cell assigns a FL server and dedicated carrier frequencies to exchange the updated model's parameters within the cell. We present two metrics to evaluate the network performance: 1) probability of successful transmission while minimizing the interference, and 2) performance of distributed FL model in terms of accuracy and loss while considering the networking dynamics. We benchmark the proposed approach using a well-known MNIST dataset for performance evaluation. We demonstrate that the proposed approach outperforms the baseline FL algorithms in terms of explicitly defining the chosen users' criteria and achieving high accuracy in a robust network

    A Weft Knit Data Glove

    Get PDF
    Rehabilitation of stoke survivors can be expedited by employing an exoskeleton. The exercises are designed such that both hands move in synergy. In this regard often motion capture data from the healthy hand is used to derive control behaviour for the exoskeleton. Therefore, data gloves can provide a low-cost solution for the motion capture of the joints in the hand. However, current data gloves are bulky, inaccurate or inconsistent. These disadvantages are inherited because the conventional design of a glove involves an external attachment that degrades overtime and causes inaccuracies. This paper presents a weft knit data glove whose sensors and support structure are manufactured in the same fabrication process thus removing the need for an external attachment. The glove is made by knitting multifilament conductive yarn and an elastomeric yarn using WholeGarment technology. Furthermore, we present a detailed electromechanical model of the sensors alongside its experimental validation. Additionally, the reliability of the glove is verified experimentally. Lastly, machine learning algorithms are implemented for classifying the posture of hand on the basis of sensor data histograms
    corecore