556 research outputs found

    On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations

    Full text link
    This paper presents a brief review of scanning-gate microscopy applied to the imaging of electron transport in buried semiconductor quantum structures. After an introduction to the technique and to some of its practical issues, we summarise a selection of its successful achievements found in the literature, including our own research. The latter focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. Based on our own experience, we then discuss in detail some of the limitations of scanning-gate microscopy. These include possible tip induced artefacts, effects of a large bias applied to the scanning tip, as well as consequences of unwanted charge traps on the conductance maps. We emphasize how special care must be paid in interpreting these scanning-gate images.Comment: Special issue on (nano)characterization of semiconductor materials and structure

    Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Full text link
    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.Comment: 13 pages, 3 figure

    2D Rutherford-Like Scattering in Ballistic Nanodevices

    Full text link
    Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit

    Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy

    Full text link
    The disordered potential landscape in an InGaAs/InAlAs two-dimensional electron gas patterned into narrow wires is investigated by means of scanning gate microscopy. It is found that scanning a negatively charged tip above particular sites of the wires produces conductance oscillations that are periodic in the tip voltage. These oscillations take the shape of concentric circles whose number and diameter increase for more negative tip voltages until full depletion occurs in the probed region. These observations cannot be explained by charging events in material traps, but are consistent with Coulomb blockade in quantum dots forming when the potential fluctuations are raised locally at the Fermi level by the gating action of the tip. This interpretation is supported by simple electrostatic simulations in the case of a disorder potential induced by ionized dopants. This work represents a local investigation of the mechanisms responsible for the disorder-induced metal-to-insulator transition observed in macroscopic two-dimensional electron systems at low enough density

    Scanning-gate microscopy of semiconductor nanostructures: an overview

    Full text link
    This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201

    Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

    Full text link
    We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev. Lett.: Editorially approved for publication 6 January 201

    Pasly – Derrière Longpont

    Get PDF
    Le diagnostic de Pasly « Derrière Longpont » a permis de mettre au jour une occupation attribuée à la transition âge du Bronze final/Hallstatt ancien. Elle se traduit par une zone de fosses polylobées dont le comblement détritique traduit une occupation de type domestique. Par ailleurs, un peu à l’écart, une fosse, au comblement très charbonneux et apparemment isolée, a livré un mobilier abondant (céramique, matériel de mouture, torchis...) dont l’analyse préliminaire permet d’évoquer l’exist..

    Bruyères-et-Montbérault – Contournement nord

    Get PDF
    Le diagnostic archéologique de Bruyères-et-Montbérault « Contournement nord » a révélé l’existence d’un réseau fossoyé très dense sur l’intégralité de sa surface. Les fossés présentent des gabarits assez homogènes et des comblements proches les uns des autres, malgré quelques exceptions. La confrontation du parcellaire actuel (lanières étroites) et des fossés mis en évidence témoigne d’un usage agricole des terrains situés sur l’emprise du diagnostic, usage qui pourrait remonter à l’essor éco..
    corecore