2,223 research outputs found

    Power-law statistics and universal scaling in the absence of criticality

    Full text link
    Critical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a system in which units are replaced by independent stochastic surrogates, and found the same power-law statistics, indicating that these are not sufficient to establish criticality. We rather suggest that these are universal features of large-scale networks when considered macroscopically. These results put caution on the interpretation of scaling laws found in nature.Comment: in press in Phys. Rev.

    Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations

    Full text link
    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magneto-encephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here, we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multi-scale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.Comment: Physical Review E (in press); 24 pages, 16 figure

    A mean-field model for conductance-based networks of adaptive exponential integrate-and-fire neurons

    Full text link
    Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at mesoscopic scales. Since VSDi signals report the average membrane potential, it seems natural to use a mean-field formalism to model such signals. Here, we investigate a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. The AdEx model can capture the spiking response of different cell types, such as regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the mean-field model. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model accurately predicts the response time course of the population. One notable exception was that the "tail" of the response at long times was not well predicted, because the mean-field does not include adaptation mechanisms. We conclude that the Master Equation formalism can yield mean-field models that predict well the behavior of nonlinear networks with conductance-based interactions and various electrophysiolgical properties, and should be a good candidate to model VSDi signals where both excitatory and inhibitory neurons contribute.Comment: 21 pages, 7 figure

    Kramers-Kronig relations and the properties of conductivity and permittivity in heterogeneous media

    Full text link
    The macroscopic electric permittivity of a given medium may depend on frequency, but this frequency dependence cannot be arbitrary, its real and imaginary parts are related by the well-known Kramers-Kronig relations. Here, we show that an analogous paradigm applies to the macroscopic electric conductivity. If the causality principle is taken into account, there exists Kramers-Kronig relations for conductivity, which are mathematically equivalent to the Hilbert transform. These relations impose strong constraints that models of heterogeneous media should satisfy to have a physically plausible frequency dependence of the conductivity and permittivity. We illustrate these relations and constraints by a few examples of known physical media. These extended relations constitute important constraints to test the consistency of past and future experimental measurements of the electric properties of heterogeneous media.Comment: 17 pages, 2 figure

    Computing threshold functions using dendrites

    Full text link
    Neurons, modeled as linear threshold unit (LTU), can in theory compute all thresh- old functions. In practice, however, some of these functions require synaptic weights of arbitrary large precision. We show here that dendrites can alleviate this requirement. We introduce here the non-Linear Threshold Unit (nLTU) that integrates synaptic input sub-linearly within distinct subunits to take into account local saturation in dendrites. We systematically search parameter space of the nTLU and TLU to compare them. Firstly, this shows that the nLTU can compute all threshold functions with smaller precision weights than the LTU. Secondly, we show that a nLTU can compute significantly more functions than a LTU when an input can only make a single synapse. This work paves the way for a new generation of network made of nLTU with binary synapses.Comment: 5 pages 3 figure

    Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure

    Get PDF
    Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both \emph{in vivo} and \emph{in vitro}. In this paper we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.Comment: Non-final version submitted to Chao

    Can power-law scaling and neuronal avalanches arise from stochastic dynamics?

    Get PDF
    The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.Comment: 14 pages, 10 figures; PLoS One, in press (2010

    Model of Low-pass Filtering of Local Field Potentials in Brain Tissue

    Full text link
    Local field potentials (LFPs) are routinely measured experimentally in brain tissue, and exhibit strong low-pass frequency filtering properties, with high frequencies (such as action potentials) being visible only at very short distances (\approx10~μm\mu m) from the recording electrode. Understanding this filtering is crucial to relate LFP signals with neuronal activity, but not much is known about the exact mechanisms underlying this low-pass filtering. In this paper, we investigate a possible biophysical mechanism for the low-pass filtering properties of LFPs. We investigate the propagation of electric fields and its frequency dependence close to the current source, i.e. at length scales in the order of average interneuronal distance. We take into account the presence of a high density of cellular membranes around current sources, such as glial cells. By considering them as passive cells, we show that under the influence of the electric source field, they respond by polarisation, i.e., creation of an induced field. Because of the finite velocity of ionic charge movement, this polarization will not be instantaneous. Consequently, the induced electric field will be frequency-dependent, and much reduced for high frequencies. Our model establishes that with respect to frequency attenuation properties, this situation is analogous to an equivalent RC-circuit, or better a system of coupled RC-circuits. We present a number of numerical simulations of induced electric field for biologically realistic values of parameters, and show this frequency filtering effect as well as the attenuation of extracellular potentials with distance. We suggest that induced electric fields in passive cells surrounding neurons is the physical origin of frequency filtering properties of LFPs.Comment: 10 figs, revised tex file and revised fig
    corecore