11 research outputs found

    Immunostimulatory property of a synthetic peptide belonging to the soluble ATP diphosphohydro-lase isoform (SmATPDase 2) and immunolocalisation of this protein in the Schistosoma mansoni egg

    Get PDF
    A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs

    A meta-analysis of the effects of galling insects on host plant secondary metabolites

    No full text
    The idea that galling insects actively manipulate host plant chemistry has been previously documented but has not been quantified across a range of galler and host plant taxa. We present the first quantitative review of the relationship between insect galling and levels of secondary metabolites in host plants. Using meta-analytic techniques, we examined this relationship across 40 galler and host plant species combinations. We found that galling insects are associated with significantly higher levels of tannins and phenolics; however, no difference was found for volatiles. Hymenoptera, Diptera and Hemiptera were associated with higher levels of secondary metabolites; however, only Hymenoptera was significant. The climatic zone of the study area did not explain significant differences in gall-induced secondary metabolites. Overall the results show that the ability of galling insects to manipulate host plant secondary chemistry is widespread across insect and plant taxa. The evolutionary success of galling insects may be in part due to this unique ability

    Development and Use of Polymeric Nanoparticles for the Encapsulation and Administration of Plant Extracts

    No full text
    International audienc
    corecore