673 research outputs found
The distinction of rock types on the basis of their mass spectra, with special reference to lunar-surface applications
It is shown that the rock types most commonly expected to be encountered on the lunar surface can for the most part be readily distinguished, chemically, by plotting their relative concentrations of Fe, Mg, and Al on a ternary variation diagram. The necessary data for characterizing as unknown as to rock type can be quite easily extracted from complete or partial mass spectra such as may be obtained by means of a robot mass spectrometer on the lunar surface. For most compositions, determination of only two nuclide or element rations will characterize the sample. Fo others, the determination of one additional ratio or comparison with a few standard spectra previously obtained in the laboratory may be necessary to clarify the unknown in terms of the chemistry of the terrestrial or meteoritic equivalents. No quantitative assay of element concentrations is necessary for such a first classification
Carbon isotope fractionation in the system CO2/gas/-CO2/aqueous/-HCO3-/aqueous/
Carbon isotope fractionation between gaseous carbon dioxide and aqueous bicarbonat
Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series
Paired Mg/Ca and δ18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of δ18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis ≈ G. bulloides > G. ruber ≈ G. sacculifer ≈ other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The ∼9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature
Three hundred eighty thousand year long stable isotope and faunal records from the Red Sea : influence of global sea level change on hydrography
Stable isotope and faunal records from the central Red Sea show high-amplitude oscillations for the past 380,000 years. Positive δ18O anomalies indicate periods of significant salt buildup during periods of lowered sea level when water mass exchange with the Arabian Sea was reduced due to a reduced geometry of the Bab el Mandeb Strait. Salinities as high as 53‰ and 55‰ are inferred from pteropod and benthic foraminifera δ18O, respectively, for the last glacial maximum. During this period all planktonic foraminifera vanished from this part of the Red Sea. Environmental conditions improved rapidly after 13 ka as salinities decreased due to rising sea level. The foraminiferal fauna started to reappear and was fully reestablished between 9 ka and 8 ka. Spectral analysis of the planktonic δ18O record documents highest variance in the orbital eccentricity, obliquity, and precession bands, indicating a dominant influence of climatically - driven sea level change on environmental conditions in the Red Sea. Variance in the precession band is enhanced compared to the global mean marine climate record (SPECMAP), suggesting an additional influence of the Indian monsoon system on Red Sea climates
Planktic foraminiferal sedimentation and the marine calcite budget
The vertical flux and sedimentation rate of planktic foraminiferal tests are quantified and a global planktic foraminiferal CaCO3 budget is presented. Test and calcite flux rates are calculated according to the distribution of species obtained from multinet and sediment trap samples. Modern planktic foraminiferal population dynamics are discussed as a prerequisite for the quantification of the calcite budget, highlighting the importance of ecological, autecological (e.g., reproduction), and biogeochemical conditions that determine the presence or absence of species. To complete the open-marine, particulate CaCO3 inventory, the contribution of coccolithophores, pteropods, and calcareous dinophytes is discussed. Based on the studied regions, the global planktic foraminiferal calcite flux rate at 100 m depth amounts to 1.3-3.2 Gt yr-1, equivalent to 23-56% of the total open marine CaCO3 flux. The preservation of tests varies on a regional and temporal scale, and is affected by local hydrography and dissolution. During most of the year (off-peak periods), many tests dissolve above 700-m water depth while settling through the water column, with on average only 1-3% of the initially exported CaCO3 reaching the deep-seafloor. Pulsed flux events, mass dumps of fast settling particles, yield a major contribution of tests to the formation of deep-sea sediments. On average, ∼25% of the initially produced planktic foraminiferal test CaCO3 settles on the seafloor. The total planktic foraminiferal contribution of CaCO3 to global surface sediments amounts to 0.36-0.88 Gt yr-1, ∼32-80% of the total deep-marine calcite budget
- …
