120 research outputs found
Draft Auctions
We introduce draft auctions, which is a sequential auction format where at
each iteration players bid for the right to buy items at a fixed price. We show
that draft auctions offer an exponential improvement in social welfare at
equilibrium over sequential item auctions where predetermined items are
auctioned at each time step. Specifically, we show that for any subadditive
valuation the social welfare at equilibrium is an -approximation
to the optimal social welfare, where is the number of items. We also
provide tighter approximation results for several subclasses. Our welfare
guarantees hold for Bayes-Nash equilibria and for no-regret learning outcomes,
via the smooth-mechanism framework. Of independent interest, our techniques
show that in a combinatorial auction setting, efficiency guarantees of a
mechanism via smoothness for a very restricted class of cardinality valuations,
extend with a small degradation, to subadditive valuations, the largest
complement-free class of valuations. Variants of draft auctions have been used
in practice and have been experimentally shown to outperform other auctions.
Our results provide a theoretical justification
Revenue Maximization and Ex-Post Budget Constraints
We consider the problem of a revenue-maximizing seller with m items for sale
to n additive bidders with hard budget constraints, assuming that the seller
has some prior distribution over bidder values and budgets. The prior may be
correlated across items and budgets of the same bidder, but is assumed
independent across bidders. We target mechanisms that are Bayesian Incentive
Compatible, but that are ex-post Individually Rational and ex-post budget
respecting. Virtually no such mechanisms are known that satisfy all these
conditions and guarantee any revenue approximation, even with just a single
item. We provide a computationally efficient mechanism that is a
-approximation with respect to all BIC, ex-post IR, and ex-post budget
respecting mechanisms. Note that the problem is NP-hard to approximate better
than a factor of 16/15, even in the case where the prior is a point mass
\cite{ChakrabartyGoel}. We further characterize the optimal mechanism in this
setting, showing that it can be interpreted as a distribution over virtual
welfare maximizers.
We prove our results by making use of a black-box reduction from mechanism to
algorithm design developed by \cite{CaiDW13b}. Our main technical contribution
is a computationally efficient -approximation algorithm for the algorithmic
problem that results by an application of their framework to this problem. The
algorithmic problem has a mixed-sign objective and is NP-hard to optimize
exactly, so it is surprising that a computationally efficient approximation is
possible at all. In the case of a single item (), the algorithmic problem
can be solved exactly via exhaustive search, leading to a computationally
efficient exact algorithm and a stronger characterization of the optimal
mechanism as a distribution over virtual value maximizers
Envy Freedom and Prior-free Mechanism Design
We consider the provision of an abstract service to single-dimensional
agents. Our model includes position auctions, single-minded combinatorial
auctions, and constrained matching markets. When the agents' values are drawn
from a distribution, the Bayesian optimal mechanism is given by Myerson (1981)
as a virtual-surplus optimizer. We develop a framework for prior-free mechanism
design and analysis. A good mechanism in our framework approximates the optimal
mechanism for the distribution if there is a distribution; moreover, when there
is no distribution this mechanism still performs well.
We define and characterize optimal envy-free outcomes in symmetric
single-dimensional environments. Our characterization mirrors Myerson's theory.
Furthermore, unlike in mechanism design where there is no point-wise optimal
mechanism, there is always a point-wise optimal envy-free outcome.
Envy-free outcomes and incentive-compatible mechanisms are similar in
structure and performance. We therefore use the optimal envy-free revenue as a
benchmark for measuring the performance of a prior-free mechanism. A good
mechanism is one that approximates the envy free benchmark on any profile of
agent values. We show that good mechanisms exist, and in particular, a natural
generalization of the random sampling auction of Goldberg et al. (2001) is a
constant approximation
The Sample Complexity of Auctions with Side Information
Traditionally, the Bayesian optimal auction design problem has been
considered either when the bidder values are i.i.d, or when each bidder is
individually identifiable via her value distribution. The latter is a
reasonable approach when the bidders can be classified into a few categories,
but there are many instances where the classification of bidders is a
continuum. For example, the classification of the bidders may be based on their
annual income, their propensity to buy an item based on past behavior, or in
the case of ad auctions, the click through rate of their ads. We introduce an
alternate model that captures this aspect, where bidders are a priori
identical, but can be distinguished based (only) on some side information the
auctioneer obtains at the time of the auction. We extend the sample complexity
approach of Dhangwatnotai et al. and Cole and Roughgarden to this model and
obtain almost matching upper and lower bounds. As an aside, we obtain a revenue
monotonicity lemma which may be of independent interest. We also show how to
use Empirical Risk Minimization techniques to improve the sample complexity
bound of Cole and Roughgarden for the non-identical but independent value
distribution case.Comment: A version of this paper appeared in STOC 201
- …
