120 research outputs found

    Draft Auctions

    Full text link
    We introduce draft auctions, which is a sequential auction format where at each iteration players bid for the right to buy items at a fixed price. We show that draft auctions offer an exponential improvement in social welfare at equilibrium over sequential item auctions where predetermined items are auctioned at each time step. Specifically, we show that for any subadditive valuation the social welfare at equilibrium is an O(log2(m))O(\log^2(m))-approximation to the optimal social welfare, where mm is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Bayes-Nash equilibria and for no-regret learning outcomes, via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations, extend with a small degradation, to subadditive valuations, the largest complement-free class of valuations. Variants of draft auctions have been used in practice and have been experimentally shown to outperform other auctions. Our results provide a theoretical justification

    Revenue Maximization and Ex-Post Budget Constraints

    Full text link
    We consider the problem of a revenue-maximizing seller with m items for sale to n additive bidders with hard budget constraints, assuming that the seller has some prior distribution over bidder values and budgets. The prior may be correlated across items and budgets of the same bidder, but is assumed independent across bidders. We target mechanisms that are Bayesian Incentive Compatible, but that are ex-post Individually Rational and ex-post budget respecting. Virtually no such mechanisms are known that satisfy all these conditions and guarantee any revenue approximation, even with just a single item. We provide a computationally efficient mechanism that is a 33-approximation with respect to all BIC, ex-post IR, and ex-post budget respecting mechanisms. Note that the problem is NP-hard to approximate better than a factor of 16/15, even in the case where the prior is a point mass \cite{ChakrabartyGoel}. We further characterize the optimal mechanism in this setting, showing that it can be interpreted as a distribution over virtual welfare maximizers. We prove our results by making use of a black-box reduction from mechanism to algorithm design developed by \cite{CaiDW13b}. Our main technical contribution is a computationally efficient 33-approximation algorithm for the algorithmic problem that results by an application of their framework to this problem. The algorithmic problem has a mixed-sign objective and is NP-hard to optimize exactly, so it is surprising that a computationally efficient approximation is possible at all. In the case of a single item (m=1m=1), the algorithmic problem can be solved exactly via exhaustive search, leading to a computationally efficient exact algorithm and a stronger characterization of the optimal mechanism as a distribution over virtual value maximizers

    Envy Freedom and Prior-free Mechanism Design

    Full text link
    We consider the provision of an abstract service to single-dimensional agents. Our model includes position auctions, single-minded combinatorial auctions, and constrained matching markets. When the agents' values are drawn from a distribution, the Bayesian optimal mechanism is given by Myerson (1981) as a virtual-surplus optimizer. We develop a framework for prior-free mechanism design and analysis. A good mechanism in our framework approximates the optimal mechanism for the distribution if there is a distribution; moreover, when there is no distribution this mechanism still performs well. We define and characterize optimal envy-free outcomes in symmetric single-dimensional environments. Our characterization mirrors Myerson's theory. Furthermore, unlike in mechanism design where there is no point-wise optimal mechanism, there is always a point-wise optimal envy-free outcome. Envy-free outcomes and incentive-compatible mechanisms are similar in structure and performance. We therefore use the optimal envy-free revenue as a benchmark for measuring the performance of a prior-free mechanism. A good mechanism is one that approximates the envy free benchmark on any profile of agent values. We show that good mechanisms exist, and in particular, a natural generalization of the random sampling auction of Goldberg et al. (2001) is a constant approximation

    The Sample Complexity of Auctions with Side Information

    Full text link
    Traditionally, the Bayesian optimal auction design problem has been considered either when the bidder values are i.i.d, or when each bidder is individually identifiable via her value distribution. The latter is a reasonable approach when the bidders can be classified into a few categories, but there are many instances where the classification of bidders is a continuum. For example, the classification of the bidders may be based on their annual income, their propensity to buy an item based on past behavior, or in the case of ad auctions, the click through rate of their ads. We introduce an alternate model that captures this aspect, where bidders are a priori identical, but can be distinguished based (only) on some side information the auctioneer obtains at the time of the auction. We extend the sample complexity approach of Dhangwatnotai et al. and Cole and Roughgarden to this model and obtain almost matching upper and lower bounds. As an aside, we obtain a revenue monotonicity lemma which may be of independent interest. We also show how to use Empirical Risk Minimization techniques to improve the sample complexity bound of Cole and Roughgarden for the non-identical but independent value distribution case.Comment: A version of this paper appeared in STOC 201
    corecore