1,139 research outputs found

    IoT Based Water Level Monitoring System with an Android Application

    Get PDF
    The principle objective of our assignment is to display the water level as well as controlling with IoT and android application. Wastage of water within the modern state of affairs, merely because of overflowing tanks isn't less expensive. Conventional water tanks can neither reveal nor manage the water stage in tank, main to huge amount of wastage. A few different technologies had sure drawbacks in a few or the alternative way. The want of removal of those quick-comings and offering an efficient and competitively priced solution has been the principle focus of this assignment. The IoT platform we are using is Arduino which is an open source. The water level within the water tank is split into most, minimal and nominal degrees indicated by using exclusive colorings for each. An ultrasonic sensor is positioned on the floor of the tank to sense the water stage and the distance is dispatched to the android utility through Arduino. We can display the tank manually using an on/off button provided within the android utility. The android application is a user interface which displays the tank format, a button for guide operation and a led for indicating the motor popularity

    THE ORGANIZATION OF MITOCHONDRIAL QUALITY CONTROL AND LIFE CYCLE IN THE NERVOUS SYSTEM IN VIVO IN THE ABSENCE OF PINK1

    Get PDF
    Maintenance of healthy mitochondria is crucial in cells, such as neurons, with hig

    Mechanical, Thermal and Physical Properties of Hybrid Banana-Jute Fibers Reinforced Epoxy and Polyester Composites: Modeling and Experiments

    Get PDF
    During the last few years, natural fiber reinforced polymer composites are widely used due to their advantages such as ease of fabrication, low density, biodegradability, low thermal conductivity, renewability, nontoxicity, combustibility and low cost of production. Prediction of mechanical and thermal properties of fiber reinforced polymer hybrid composites is a challenging task for current simulation techniques, so does the need to understand the numerical simulation of such materials. The present work reports the analytical, numerical and experimental study on mechanical and thermal behaviour of fiber reinforced polymer hybrid composites. Banana and jute fibers in unidirectional and short form are considered as reinforcement with different fiber loading (0-40 wt.%) and with different weight ratio (1:1, 1:3, and 3:1). Two theoretical models were developed based on one dimensional heat conduction model for calculating the thermal conductivity of unidirectional and short fiber reinforced hybrid composites. The three-dimensional micromechanical models based on finite element method with representative volume element are employed to predict the elastic and thermal conductivity of unidirectional and short banana-jute fiber reinforced polymer hybrid composites. The experimental work presents the test results in regard to the physical, mechanical and thermal behaviour of the epoxy and polyester based composites reinforced with unidirectional and short fibers. Finally, this work includes the comparison of the micromechanical models with experimental and existing analytical formulations like rule of hybrid mixture, geometric mean, Halpin-Tsai, and Lewis and Nielsen models that are used extensively in material modeling. For unidirectional fiber based composites, with addition of 7.5 wt.% banana and 22.5 wt.% jute fiber as reinforcement, the longitudinal tensile strength of epoxy increases from 32.28 MPa to 84.48 MPa and that of polyester increases from 20.72 MPa to 66.89 MPa and the ILSS of epoxy increases from 6.92 MPa to 20.53 MPa and that of polyester increases from 4.05 MPa to 16.16 MPa with same fiber loading. For short fiber based composites, with the addition of 7.5 wt.% banana and 22.5 wt.% jute as reinforcement, the tensile strength of epoxy increased by 103% and reaches 65.84 MPa, flexural strength of epoxy increased by 146% and reaches to 114.31 MPa and its flexural modulus increased by 120% and reaches to 7.33 GPa. Whereas, in polyester based hybrid composites with similar fiber loading, the tensile strength of polyester increased by 171% and reaches to 56.25 MPa, flexural strength of polyester increased by 98.9% and reaches to 81.93 MPa and its flexural modulus increased by 91.39% and reaches to 3.09 GPa. For unidirectional fiber based composites, with the incorporation of 10 wt.% banana and 30 wt.% jute fiber, the longitudinal thermal conductivity of neat epoxy reduced by 32.23% and reaches to 0.246 W/m-K and that of neat polyester reduced by 28.50% and reaches to 0.143 W/m-K. For short fiber based composites at the same fiber loading, the effective thermal conductivity of epoxy reduces from 0.363 W/m-K to 0.239 W/m-K and that of polyester reduces from 0.20 W/m-K to 0.14 W/m-K. The study reveals that the performance of hybrid composites with the weight ratio of banana and jute fiber as 1:3 shows better than the weight ratio of 1:1 and 3:1. With low thermal conductivity and improved mechanical properties, the banana-jute fiber reinforced polymer hybrid composites can be considered in thermal insulation and structural applications in order to reduce the dependence on non-renewable material sources and energy consumption

    Numerical simulation of local temperature distortions during ice nucleation of cells in suspension

    Get PDF
    Knowledge of intercellular ice formation in cells embedded in an extra-cellular suspension is essential for effective design of freezing protocols. The presence of cell membrane causes super-cooling of the intra-cellular region, which nucleates at much lower temperatures than the surrounding extra-cellular space and is accompanied by the exothermic release of the latent heat. This is a dynamic process and causes thermal distortions in and around the cell where nucleation occurs. In the present study, an attempt has been made to numerically determine the magnitude of thermal distortion (ΔT) and the time (dt) it takes for this distortion to damp out to the local temperature. A two-dimensional computational model is presented in which the maximum thermal distortions (with an assumed cell diameter of 50 μm, nucleating at -5 °C while being cooled at 5 °C/min; denoted as Scenario 1) and the lowest-possible thermal distortions (with an assumed cell diameter of 5 μm, nucleating at -20 °C while being cooled at 100 °C/min; denoted as Scenario 2) are determined. Extensive computations have been performed assuming either the presence of a single, dual, or four cells in suspension. It is expected that these representative results would serve the purpose of estimating an effective sampling rate of microscale thermocouples currently being fabricated and of other biomedical devices used to measure intracellular ice formation. © 2008 Elsevier Ltd. All rights reserved

    Cryomicroscopic investigations of freezing processes in cell suspensions

    Get PDF
    This study evaluates the freezing response of three different cell types, Pacific oyster embryos (∼50 m in diameter), Jurkat cells and HeLa cells (∼12 to 15 m\u27s in diameter), using cryomicroscopy. Freezing experiments were performed on oyster embryos at cooling rates of either 5 or 10 °C/min, while Jurkats were cooled at either 1 or 10 °C/min and HeLa cells were cooled at either 1, 15 or 20 °C/min, respectively. The experiments with oyster embryos were primarily designed to investigate the phenomena of intracellular ice formation (IIF) while the experiments for Jurkat and HeLa cells were designed to investigate both cellular dehydration and IIF during freezing. IIF was characterized by the abrupt black flashing during the cooling steps while the cellular dehydration experiments were characterized by the volumetric (projected area) shrinkage of the cells during the cooling steps. Mathematical models were fit to the cellular dehydration data to obtain the Jurkat and HeLa cell membrane permeability (Lpg) at the reference temperature (273.15 K), the apparent activation energy of the cellular dehydration process (ELp) or the temperature dependence of Lpg. The temperature dependence of IIF in the oyster embryos, the Jurkat cells and the HeLa cells were also determined. © Acharya and Devireddy; Licensee Bentham Open

    Activation of Caspases and p53 by Bovine Herpesvirus 1 Infection Results in Programmed Cell Death and Efficient Virus Release

    Get PDF
    Programmed cell death (PCD), or apoptosis, is initiated in response to various stimuli, including virus infection. Bovine herpesvirus 1 (BHV-1) induces PCD in peripheral blood mononuclear cells at the G0/G1 phase of the cell cycle (E. Hanon, S. Hoornaert, F. Dequiedt, A. Vanderplasschen, J. Lyaku, L. Willems, and P.-P. Pastoret, Virology 232:351–358, 1997). However, penetration of virus particles is not required for PCD (E. Hanon, G. Meyer, A. Vanderplasschen, C. Dessy-Doize, E. Thiry, and P. P. Pastoret, J. Virol. 72:7638–7641, 1998). The mechanism by which BHV-1 induces PCD in peripheral blood mononuclear cells is not understood, nor is it clear whether nonlymphoid cells undergo PCD following infection. This study demonstrates that infection of bovine kidney (MDBK) cells with BHV-1 leads to PCD, as judged by terminal deoxynucleotidyltransferase- mediated dUTP-biotin nick end labeling, DNA laddering, and chromatin condensation. p53 appears to be important in this process, because p53 levels and promoter activity increased after infection. Expression of proteins that are stimulated by p53 (p21Waf1 and Bax) is also activated after infection. Cleavage of Bcl-xL, a protein that inhibits PCD, occurred after infection, suggesting that caspases (interleukin-1β- converting enzyme-like proteases) were activated. Other caspase substrates [poly(ADP-ribose) polymerase and actin] are also cleaved during the late stages of infection. Inhibition of caspase activity delayed cytotoxic activity and virus release but increased the overall virus yield. Taken together, these results indicate that nonlymphoid cells undergo PCD near the end of productive infection and further suggest that caspases enhance virus release

    Rheological Characterization and Printability of Sodium Alginate–Gelatin Hydrogel for 3D Cultures and Bioprinting

    Get PDF
    The development of biocompatible hydrogels for 3D bioprinting is essential for creating functional tissue models and advancing preclinical drug testing. This study investigates the formulation, printability, mechanical properties, and biocompatibility of a novel Alg-Gel hydrogel blend (alginate and gelatin) for use in extrusion-based 3D bioprinting. A range of hydrogel compositions were evaluated for their rheological behavior, including shear-thinning properties, storage modulus, and compressive modulus, which are crucial for maintaining structural integrity during printing and supporting cell viability. The printability assessment of the 7% alginate–8% gelatin hydrogel demonstrated that the 27T tapered needle achieved the highest normalized Printability Index (POInormalized = 1), offering the narrowest strand width (0.56 ± 0.02 mm) and the highest printing accuracy (97.2%) at the lowest printing pressure (30 psi). In contrast, the 30R needle, with the smallest inner diameter (0.152 mm) and highest printing pressure (80 psi), resulted in the widest strand width (0.70 ± 0.01 mm) and the lowest accuracy (88.8%), resulting in a POInormalized of 0.274. The 30T and 27R needles demonstrated moderate performance, with POInormalized values of 0.758 and 0.558, respectively. The optimized 7% alginate and 8% gelatin blend demonstrated favorable printability, mechanical strength, and cell compatibility with MDA-MB-213 breast cancer cells, exhibiting high cell proliferation rates and minimal cytotoxicity over a 2-week culture period. This formulation offers a balanced approach, providing sufficient viscosity for precision printing while minimizing shear stress to preserve cell health. This work lays the groundwork for future advancements in bioprinted cancer models, contributing to the development of more effective tools for drug screening and personalized medicine

    Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection

    Get PDF
    A biomarker is a physiological observable marker that acts as a stand-in and, in the best-case scenario, forecasts a clinically significant outcome. Diagnostic biomarkers are more convenient and cost-effective than directly measuring the ultimate clinical outcome. Cancer is among the most prominent global health problems and a major cause of morbidity and death globally. Therefore, cancer biomarker assays that are trustworthy, consistent, precise, and verified are desperately needed. Biomarker-based tumor detection holds a lot of promise for improving disease knowledge at the molecular scale and early detection and surveillance. In contrast to conventional approaches, surface plasmon resonance (SPR) allows for the quick and less invasive screening of a variety of circulating indicators, such as circulating tumor DNA (ctDNA), microRNA (miRNA), circulating tumor cells (CTCs), lipids, and proteins. With several advantages, the SPR technique is a particularly beneficial choice for the point-of-care identification of biomarkers. As a result, it enables the timely detection of tumor markers, which could be used to track cancer development and suppress the relapse of malignant tumors. This review emphasizes advancements in SPR biosensing technologies for cancer detection

    Japanese encephalitis virus associated post-infectious relapsing acute onset chronic demyelinating polyradiculoneuritis

    Get PDF
    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an uncommon manifestation of Japanese encephalitis (JE) virus infection. JE is a neurotropic viral tropical disease affecting both CNS and PNS. Hereby report a case of acute onset CIDP (A-CIDP) following primary infection with JE who presented as symmetric flaccid areflexic sensorimotor quadriparesis with subsequent clinical improvement with steroids and plasmapheresis

    From the periphery to the brain: Lipocalin-2, a friend or foe?

    Get PDF
    Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.Ana Catarina Ferreira and Sandro Da Mesquita are recipients of PhD fellowships by the Fundação para a Ciência e Tecnologia (FCT, Portugal)/FEDER. Fernanda Marques is an assistant researcher IF/ 00231/2013 of the Fundação para a Ciência e Tecnologia (FCT, Portugal). This work was supported by Fundação para a Ciência e Tecnologia (FCT) and COMPETE through the project: EXPL/NEUOSD/2196/2013 (to Marques F). The authors thank Nadine Santos for the helpful comments on the manuscript
    corecore