2,427 research outputs found
First-principles predictions of low-energy phases of multiferroic BiFeO3
We used first-principles methods to perform a systematic search for
potentially-stable phases of multiferroic BiFeO3. We considered a simulation
cell compatible with the atomic distortions that are most common among
perovskite oxides, and found a large number of local minima of the energy
within 100 meV/f.u. of the ferroelectric ground state. We discuss the variety
of low-symmetry structures discovered, as well as the implications of these
findings as regards current experimental (e.g., on thin films displaying {\em
super-tetragonal} phases) and theoretical (on models for BiFeO3's structural
phase transitions) work on this compound.Comment: 14 pages, 9 figures, accepted in PRB (contains small changes in the
text with respect to the first version
A dynamic conductance model of fluorescent lamp for electronic ballast design simulation
A Spice-compatible dynamic conductance model of
a fluorescent lamp for use in electronic ballast simulation is presented.
The time-dependent conductance of the fluorescent lamp is
derived from a plasma ionization balance equation that uses simplified descriptions of the physical processes within the lamp as its basis. The model has been designed to enable user-defined lamp radius, length, buffer gas pressure and cold-spot temperature as input parameters thus representing a valuable tool for ballast simulations.
Simulation results are compared to experimental measurements and satisfactory agreement is achieved
A First-Principles Study of the Electronic Reconstructions of LaAlO3/SrTiO3 Heterointerfaces and Their Variants
We present a first-principles study of the electronic structures and
properties of ideal (atomically sharp) LaAlO3/SrTiO3 (001) heterointerfaces and
their variants such as a new class of quantum well systems. We demonstrate the
insulating-to-metallic transition as a function of the LaAlO3 film thickness in
these systems. After the phase transition, we find that conduction electrons
are bound to the n-type interface while holes diffuse away from the p-type
interface, and we explain this asymmetry in terms of a large hopping matrix
element that is unique to the n-type interface. We build a tight-binding model
based on these hopping matrix elements to illustrate how the conduction
electron gas is bound to the n-type interface. Based on the `polar catastrophe'
mechanism, we propose a new class of quantum wells at which we can manually
control the spatial extent of the conduction electron gas. In addition, we
develop a continuous model to unify the LaAlO3/SrTiO3 interfaces and quantum
wells and predict the thickness dependence of sheet carrier densities of these
systems. Finally, we study the external field effect on both LaAlO3/SrTiO3
interfaces and quantum well systems. Our systematic study of the electronic
reconstruction of LaAlO3/SrTiO3 interfaces may serve as a guide to engineering
transition metal oxide heterointerfaces.Comment: 50 pages, 18 figures and 4 table
Ferroelectric Dead Layer Driven by a Polar Interface
Based on first-principles and model calculations we investigate the effect of
polar interfaces on the ferroelectric stability of thin-film ferroelectrics. As
a representative model, we consider a TiO2-terminated BaTiO3 film with LaO
monolayers at the two interfaces that serve as doping layers. We find that the
polar interfaces create an intrinsic electric field that is screened by the
electron charge leaking into the BaTiO3 layer. The amount of the leaking charge
is controlled by the boundary conditions which are different for three
heterostructures considered, namely Vacuum/LaO/BaTiO3/LaO, LaO/BaTiO3, and
SrRuO3/LaO/BaTiO3/LaO. The intrinsic electric field forces ionic displacements
in BaTiO3 to produce the electric polarization directed into the interior of
the BaTiO3 layer. This creates a ferroelectric dead layer near the interfaces
that is non-switchable and thus detrimental to ferroelectricity. Our
first-principles and model calculations demonstrate that the effect is stronger
for a larger effective ionic charge at the interface and longer screening
length due to a stronger intrinsic electric field that penetrates deeper into
the ferroelectric. The predicted mechanism for a ferroelectric dead layer at
the interface controls the critical thickness for ferroelectricity in systems
with polar interfaces.Comment: 33 Pages, 5 figure
Integrated pest management portfolios in UK arable farming: results of a farmer survey.
Farmers are faced with a wide range of pest management (PM) options that can be adopted in isolation or alongside complementary or substitute strategies. This paper presents the results of a survey of UK cereal producers, focusing on the character and diversity of PM strategies currently used by, or available to, farmers. In addition, the survey asked various questions pertaining to agricultural policy participation, attitude towards environmental issues, sources of PM advice and information and the important characteristics of PM technologies. The results indicate that many farmers do make use of a suite of PM techniques, and that their choice of integrated PM (IPM) portfolio appears to be jointly dictated by farm characteristics and government policy. Results also indicate that portfolio choice does affect the number of subsequent insecticide applications per crop. These results help to identify the type of IPM portfolios considered to be adoptable by farmers and highlight the importance of substitution in IPM portfolios. As such, these results will help to direct R&D effort towards the realisation of more sustainable PM approaches and aid the identification of potential portfolio adopters. These findings highlight the opportunity that a revised agri-environmental policy design could generate in terms of enhancing coherent IPM portfolio adoption
Phenomenological theory of phase transitions in highly piezoelectric perovskites
Recently discovered fine structure of the morphotropic phase boundaries in
highly piezoelectric mixture compounds PZT, PMN-PT, and PZN-PT demonstrates the
importance of highly non-linear interactions in these systems. We show that an
adequate Landau-type description of the ferroelectric phase transitions in
these compounds is achieved by the use of a twelfth-order expansion of the
Landau potential in terms of the phenomenological order parameter.
Group-theoretical and catastrophe-theory methods are used in constructing the
appropriate Landau potential. A complete phase diagram is calculated in
phenomenological parameter space. The theory describes both PZT and PZN-PT
types of phase diagrams, including the newly found monoclinic and orthorhombic
phases. Anomalously large piezoelectric coefficients are predicted in the
vicinity of the phase transition lines.Comment: RevTex4, 8 pages, 2 figures. Dramatically changed after referees'
Comments, to appear in Phys. Rev. B, 1 April 200
Concentration phase diagram of Ba(x)Sr(1-x)TiO3 solid solutions
Method of derivation of phenomenological thermodynamic potential of solid
solutions is proposed in which the interaction of the order parameters of
constituents is introduced through the account of elastic strain due to misfit
of the lattice parameters of the end-members. The validity of the method is
demonstrated for Ba(x)Sr(1-x)TiO3 system being a typical example of
ferroelectric solid solution. Its phase diagram is determined using
experimental data for the coefficients in the phenomenological potentials of
SrTiO3 and BaTiO3. In the phase diagram of the Ba(x)Sr(1-x)TiO3 system for
small Ba concentration, there are a tricritical point and two multiphase points
one of which is associated with up to 6 possible phases.Comment: 8 pages, 3 figure
Occurrence of target-site resistance to neonicotinoids in the aphid Myzus persicae in Tunisia, and its status on different host plants
This is the peer reviewed version of the following article: Kamel Charaabi, Sonia Boukhris-bouhachem, Mohamed Makni, and Ian Denholm, ‘Occurrence of target‐site resistance to neonicotinoids in the aphid Myzus persicae in Tunisia, and its status on different host plants’, Pest Management Science, Vol. 74(6): 1297-1301, June 2018, which has been published in final form athttps://doi.org/10.1002/ps.4833 Under embargo until 19 December 2018. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.BACKGROUND: The R81T mutation conferring target-site resistance to neonicotinoid insecticides in Myzus persicae was first detected in France and has since spread across much of southern Europe. In response to recent claims of control failure with neonicotinoids in Tunisia, we have used a molecular assay to investigate the presence and distribution of this target-site mutation in samples collected from six locations and six crops attacked by M. persicae. RESULTS: The resistance allele containing R81T was present at substantial frequencies (32–55%) in aphids collected between 2014 and 2016 from northern Tunisia but was much rarer further south. It occurred in aphids collected from the aphid's primary host (peach) and four secondary crop hosts (potato, pepper, tomato and melon). Its absence in aphids from tobacco highlights complexities in the systematics of M. persicae that require further investigation. CONCLUSION: This first report of R81T from North Africa reflects a continuing expansion of its range around the Mediterranean Basin, although it remains unrecorded elsewhere in the world. Loss of efficacy of neonicotinoids presents a serious threat to the sustainability of aphid control.Peer reviewe
High frequency polarization switching of a thin ferroelectric film
We consider both experimentally and analytically the transient oscillatory
process that arises when a rapid change in voltage is applied to a
ferroelectric thin film deposited on an substrate.
High frequency () polarization oscillations are observed
in the ferroelectric sample. These can be understood using a simple
field-polarization model. In particular we obtain analytic expressions for the
oscillation frequency and the decay time of the polarization fluctuation in
terms of the material parameters. These estimations agree well with the
experimental results
Fluctuations, Higher Order Anharmonicities, and Landau Expansion for Barium Titanate
Correct phenomenological description of ferroelectric phase transitions in
barium titanate requires accounting for eighth-order terms in the free energy
expansion, in addition to the conventional sixth-order contributions. Another
unusual feature of BaTiO_3 crystal is that the coefficients B_1 and B_2 of the
terms P_x^4 and P_x^2*P_y^2 in the Landau expansion depend on the temperature.
It is shown that the temperature dependence of B_1 and B_2 may be caused by
thermal fluctuations of the polarization, provided the fourth-order
anharmonicity is anomalously small, i. e. the nonlinearity of P^4 type and
higher-order ones play comparable roles. Non-singular (non-critical)
fluctuation contributions to B_1 and B_2 are calculated in the first
approximation in sixth-order and eighth-order anharmonic constants. Both
contributions increase with the temperature, which is in agreement with
available experimental data. Moreover, the theory makes it possible to
estimate, without any additional assumptions, the ratio of fluctuation
(temperature dependent) contributions to coefficients B_1 and B_2. Theoretical
value of B_1/B_2 appears to be close to that given by experiments.Comment: 5 pages, 1 figur
- …
