1,207 research outputs found
Loss-tolerant parity measurement for distant quantum bits
We propose a scheme to measure the parity of two distant qubits, while
ensuring that losses on the quantum channel between them does not destroy
coherences within the parity subspaces. This capability enables deterministic
preparation of highly entangled qubit states whose fidelity is not limited by
the transmission loss. The key observation is that for a probe electromagnetic
field in a particular quantum state, namely a superposition of two coherent
states of opposite phases, the transmission loss stochastically applies a
near-unitary back-action on the probe state. This leads to a parity measurement
protocol where the main effect of the transmission losses is a decrease in the
measurement strength. By repeating the non-destructive (weak) parity
measurement, one achieves a high-fidelity entanglement in spite of a
significant transmission loss
General phase spaces: from discrete variables to rotor and continuum limits
We provide a basic introduction to discrete-variable, rotor, and
continuous-variable quantum phase spaces, explaining how the latter two can be
understood as limiting cases of the first. We extend the limit-taking
procedures used to travel between phase spaces to a general class of
Hamiltonians (including many local stabilizer codes) and provide six examples:
the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the
Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the
Kitaev honeycomb model. We obtain continuous-variable generalizations of all
models, some of which are novel. The Baxter model is mapped to a chain of
coupled oscillators and the Rabi model to the optomechanical radiation pressure
Hamiltonian. The procedures also yield rotor versions of all models, five of
which are novel many-body extensions of the almost Mathieu equation. The toric
and cubic codes are mapped to lattice models of rotors, with the toric code
case related to U(1) lattice gauge theory.Comment: 22 pages, 3 figures; part of special issue on Rabi model; v2 minor
change
Planar Superconducting Whispering Gallery Mode Resonators
We introduce a microwave circuit architecture for quantum signal processing
combining design principles borrowed from high-Q 3D resonators in the quantum
regime and from planar structures fabricated with standard lithography. The
resulting '2.5D' whispering-gallery mode resonators store 98% of their energy
in vacuum. We have measured internal quality factors above 3 million at the
single photon level and have used the device as a materials characterization
platform to place an upper bound on the surface resistance of thin film
aluminum of less than 250nOhms.Comment: 3 Pages, 3 Figure
Circuit QED and engineering charge based superconducting qubits
The last two decades have seen tremendous advances in our ability to generate
and manipulate quantum coherence in mesoscopic superconducting circuits. These
advances have opened up the study of quantum optics of microwave photons in
superconducting circuits as well as providing important hardware for the
manipulation of quantum information. Focusing primarily on charge-based qubits,
we provide a brief overview of these developments and discuss the present state
of the art. We also survey the remarkable progress that has been made in
realizing circuit quantum electrodynamics (QED) in which superconducting
artificial atoms are strongly coupled to individual microwave photons.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum
Informatio
Josephson Amplifier for Qubit Readout
We report on measurements of a Josephson amplifier (J-amp) suitable for
quantum-state qubit readout in the microwave domain. It consists of two
microstrip resonators which intersect at a Josephson ring modulator. A maximum
gain of about 20 dB, a bandwidth of 9 MHz, and a center-frequency tunability of
about 60 MHz with gain in excess of 10 dB have been attained for idler and
signal of frequencies 6.4 GHz and 8.1 GHz, in accordance with theory. Maximum
input power measurements of the J-amp show a relatively good agreement with
theoretical prediction. We discuss how the amplifier characteristics can be
improved.Comment: 9 pages, 4 figure
Inelastic Microwave Photon Scattering off a Quantum Impurity in a Josephson-Junction Array
Quantum fluctuations in an anharmonic superconducting circuit enable
frequency conversion of individual incoming photons. This effect, linear in the
photon beam intensity, leads to ramifications for the standard input-output
circuit theory. We consider an extreme case of anharmonicity in which photons
scatter off a small set of weak links within a Josephson junction array. We
show that this quantum impurity displays Kondo physics and evaluate the elastic
and inelastic photon scattering cross sections. These cross sections reveal
many-body properties of the Kondo problem that are hard to access in its
traditional fermionic version.Comment: 18 pages, 5 figures; v2: published versio
Detecting charge noise with a Josephson junction: A problem of thermal escape in presence of non-Gaussian fluctuations
Motivated by several experimental activities to detect charge noise produced
by a mesoscopic conductor with a Josephson junction as on-chip detector, the
switching rate out of its zero-voltage state is studied. This process is
related to the fundamental problem of thermal escape in presence of
non-Gaussian fluctuations. In the relevant case of weak higher than second
order cumulants, an effective Fokker-Planck equation is derived, which is then
used to obtain an explicit expression for the escape rate. Specific results for
the rate asymmetry due to the third moment of current noise allow to analyse
experimental data and to optimize detection circuits.Comment: 4 pages, 1 figure; minor typos corrected, some revisions in the tex
Measuring the Decoherence of a Quantronium Qubit with the Cavity Bifurcation Amplifier
Dispersive readouts for superconducting qubits have the advantage of speed
and minimal invasiveness. We have developed such an amplifier, the Cavity
Bifurcation Amplifier (CBA) [10], and applied it to the readout of the
quantronium qubit [2]. It consists of a Josephson junction embedded in a
microwave on-chip resonator. In contrast with the Josephson bifurcation
amplifier [17], which has an on-chip capacitor shunting a junction, the
resonator is based on a simple coplanar waveguide imposing a pre-determined
frequency and whose other RF characteristics like the quality factor are easily
controlled and optimized. Under proper microwave irradiation conditions, the
CBA has two metastable states. Which state is adopted by the CBA depends on the
state of a quantronium qubit coupled to the CBA's junction. Due to the MHz
repetition rate and large signal to noise ratio we can show directly that the
coherence is limited by 1/f gate charge noise when biased at the sweet spot - a
point insensitive to first order gate charge fluctuations. This architecture
lends itself to scalable quantum computing using a multi-resonator chip with
multiplexed readouts.Comment: 6 pages, 5 figures To be published in Physical Review
- …
