521 research outputs found

    The contribution of 211 particles to the mechanical reinforcement mechanism of 123 superconducting single domains

    Full text link
    Hardness and fracture toughness of Dy-123 single-domains were studied by Vickers micro-indentation. A significant anisotropy of the mechanical properties was observed. Hardness tests give higher values when performed in (001) planes rather than in planes parallel to the c-axis. Moreover cracks pattern around the indentation follows preferential orientation in planes parallel to the c-axis whereas a classical ''four-cracks'' pattern is observed in the (001) planes. It has been possible to show the crucial role played by the 211-particles in the deviating mechanism of cracks and the relevance of the 211-particle distribution high homogeneity in the material.Comment: 14 pages, including 5 figures and 1 Table. submitted to Supercond. Sci. Techno

    Consequences of the peculiar intrinsic properties of MgB2 on its macroscopic current flow

    Full text link
    The influence of two important features of magnesium diboride on the macroscopic transport properties of polycrystalline MgB2 is discussed in the framework of a percolation model. While two band superconductivity does not have significant consequences in the field and temperature range of possible power applications, the opposite is true for the anisotropy of the upper critical field. The field dependence of the critical current densities strongly increases and the macroscopic supercurrents disappear well below the apparent upper critical field. The common scaling laws for the field dependence of the volume pinning force are altered and Kramer's plot is no longer linear, although grain boundary pinning dominates in nearly all polycrystalline MgB2 conductors. In contrast to the conventional superconductors NbTi and Nb3Sn, a significant critical current anisotropy can be induced by the preparation technique of MgB2 tapes

    Current percolation and anisotropy in polycrystalline MgB2_2

    Full text link
    The influence of anisotropy on the transport current in MgB2_2 polycrystalline bulk samples and wires is discussed. A model for the critical current density is proposed, which is based on anisotropic London theory, grain boundary pinning and percolation theory. The calculated currents agree convincingly with experimental data and the fit parameters, especially the anisotropy, obtained from percolation theory agree with experiment or theoretical predictions.Comment: 5 pages, accepted for publication in Physical Review Letters (http://prl.aps.org/

    The flux pinning force and vortex phase diagram of single crystal FeTe0.60Se0.40

    Full text link
    The flux pinning force density (Fp) of the single crystalline FeTe0.60Se0.40 superconductor has been calculated from the magnetization measurements. The normalized Fp versus h (=H/Hirr) curves are scaled using the Dew-Hughes formula to underline the pinning mechanism in the compound. The obtained values of pinning parameters p and q indicate the vortex pinning by the mixing of the surface and the point core pinning of the normal centers. The vortex phase diagram has also been drawn for the first time for the FeTe0.60Se0.40, which has very high values of critical current density Jc ~ 1.10(5) Amp/cm2 and the upper critical field Hc2(0) = 65T, with a reasonably high transition temperature Tc =14.5K.Comment: 12 pages, 4 figure

    Critical Currents, Pinning Forces and Irreversibility Fields in (YxTml-x)Ba2Cu3O7 Single Crystals with Columnar Defects in Fields up to 50 T

    Full text link
    We have studied the influence of columnar defects, created by heavy-ion (Kr) irradiation with doses up to 6 10^11 Kr-ions/cm2, on the superconducting critical parameters of single crystalline (YxTm1-x)Ba2Cu3O7. Magnetisation measurements in pulsed fields up to 50 T in the temperature range 4.2 - 90 K revealed that: (i) in fields up to T the critical current Jc(H,T) is considerably enhanced and (ii) down to temperatures T ~ 40 K the irreversibility field Hirr(T) is strongly increased. The field range and magnitude of the Jc(H,T) and Hirr(T) enhancement increase with increasing irradiation dose. To interpret these observations, an effective matching field was defined. Moreover, introducing columnar defects also changes the pinning force fp qualitatively. Due to stronger pinning of flux lines by the amorphous defects, the superconducting critical parameters largely exceed those associated with the defect structures in the unirradiated as-grown material: Jc,irrad(77 K, 5 T) ^3 10* Jc,ref(77 K, 5 T).Comment: 11 pages, all PDF, contribution to Physica

    Assessment of the Al–Fe–Ti system

    Get PDF
    The Al–Fe–Ti system has been assessed and the limiting binary systems are shortly reviewed. Based on a thorough review of the literature, isotherms at 800, 900, and 1000 °C have been re-evaluated and a provisional isotherm at 1200 °C is presented for the first time. The effect of alloying the binary phases with the third component is reviewed with regard to the ternary homogeneity ranges, crystallography, order/disorder transformations, and site occupancies. Of the variously reported ternary compounds only the existence of “Al2FeTi” (τ2) and “Al8FeTi3” (τ3) is confirmed. The occurrence of the phases τ2*, τ′2, and of a new stacking variant of TiAl is still under discussion, while the existence of the phases Fe2AlTi (τ1) and Fe25Al69Ti6 (X) is ruled out. The presented reaction scheme corroborates the isothermal sections and also a representation of the liquidus surface is given. Magnetic, electrical, thermochemical, atomistic and diffusion data for Al–Fe–Ti alloys are summarised and an overview about studies on modelling of phase equilibria and phase transformations is given

    Influence of nonlocal electrodynamics on the anisotropic vortex pinning in YNi2B2CYNi_2B_2C

    Full text link
    We have studied the pinning force density Fp of YNi_2B_2C superconductors for various field orientations. We observe anisotropies both between the c-axis and the basal plane and within the plane, that cannot be explained by usual mass anisotropy. For magnetic field HcH \parallel c, the reorientation structural transition in the vortex lattice due to nonlocality, which occurs at a field H11kOeH_1 \sim 1kOe, manifests itself as a kink in Fp(H). When HcH \bot c, Fp is much larger and has a quite different H dependence, indicating that other pinning mechanisms are present. In this case the signature of nonlocal effects is the presence of a fourfold periodicity of Fp within the basal plane.Comment: 4 pages, 3 figure

    Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3

    Full text link
    The nanostructure and magnetic properties of polycrystalline MgCNi_3 were studied by x-ray diffraction, electron microscopy, and vibrating sample magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic change to pinning by a nanometer-scale distribution of core pinning sites is indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions inside the grains, which are smaller than the diameter of fluxon cores 2xi at high temperature and become effective with decreasing temperature when xi(T) approaches the nanostructural scale. Transmission electron microscopy revealed cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the above hypothesis since xi(0) = 6 nm. High critical current densities, more than 10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by carbon. Dirty-limit behavior seen in previous studies may be tied to electron scattering by the precipitates, indicating the possibility that strong core pinning might be combined with a technologically useful upper critical field if versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR

    Temperature dependence and mechanisms for vortex pinning by periodic arrays of Ni dots in Nb films

    Full text link
    Pinning interactions between superconducting vortices in Nb and magnetic Ni dots were studied as a function of current and temperature to clarify the nature of pinning mechanisms. A strong current dependence is found for a square array of dots, with a temperature dependent optimum current for the observation of periodic pinning, that decreases with temperature as (1-T/Tc)3/2. This same temperature dependence is found for the critical current at the first matching field with a rectangular array of dots. The analysis of these results allows to narrow the possible pinning mechanisms to a combination of two: the interaction between the vortex and the magnetic moment of the dot and the proximity effect. Moreover, for the rectangular dot array, the temperature dependence of the crossover between the low field regime with a rectangular vortex lattice to the high field regime with a square configuration has been studied. It is found that the crossover field increases with decreasing temperature. This dependence indicates a change in the balance between elastic and pinning energies, associated with dynamical effects of the vortex lattice in the high field range.Comment: 12 text pages (revtex), 6 figures (1st jpeg, 2nd-6th postscript) accepted in Physical Review
    corecore