6,594 research outputs found

    Highly Efficient Excitation of Surface Plasmons Using a Si Gable Tip

    Get PDF
    A compact and highly efficient technique to excite SPP mode at an Au/SiO2 interface by using an engineered high index (silicon) gabled tip at the 1550 nm wavelength has been proposed. The optimized geometry of the Si tip enables a highly efficient excitation of the single interface SPP mode through near field interaction in an ultra-compact setup. An experimental demonstration of the proposed scheme is also presented in the paper which converts 25.5% of the total input power to an SPP mode. With an improved fabrication, this efficiency can reach as high as 52%. The device is compact, facilitates on-chip excitation of the SPP, its fabrication is compatible with the standard Si fabrication processes, and, as such it is expected to be very useful in the design of future integrated photonic circuits as well as integrated sensors. Also, this scheme can find applications in studying nonlinear characteristics of materials

    Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies

    Get PDF
    Garcinol (GAR) is a naturally occurring polyisoprenylated phenolic compound. It has been recently investigated for its biological activities such as antioxidant, anti-inflammatory, anti ulcer, and antiproliferative effect on a wide range of human cancer cell lines. Though the outcomes are very promising, its extreme insolubility in water remains the main obstacle for its clinical application. Herein we report the formulation of GAR entrapped PLGA nanoparticles by nanoprecipitation method using vitamin E TPGS as an emulsifier. The nanoparticles were characterized for size, surface morphology, surface charge, encapsulation efficiency and in vitro drug release kinetics. The MTT assay depicted a high amount of cytotoxicity of GAR-NPs in B16F10, HepG2 and KB cells. A considerable amount of cell apoptosis was observed in B16f10 and KB cell lines. In vivo cellular uptake of fluorescent NPs on B16F10 cells was also investigated. Finally the GAR loaded NPs were radiolabeled with technetium-99m with >95% labeling efficiency and administered to B16F10 melanoma tumor bearing mice to investigate the in vivo deposition at the tumor site by biodistribution and scintigraphic imaging study. In vitro cellular uptake studies and biological evaluation confirm the efficacy of the formulation for cancer treatmen

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore