601 research outputs found

    Dietary N-carbamylglutamate supplementation improves ammonia tolerance of juvenile yellow catfish Pelteobagrus fulvidraco

    Get PDF
    Introduction: Ammonia has been of concern for its high toxicity to animals. N-carbamylglutamate (NCG) can reduce blood ammonia levels in mammals, but studies on ammonia tolerance in fish are insufficient.Methods: Juvenile yellow catfish were fed two levels of NCG (0.00% and 0.05%) for 84 days under three ammonia levels (0.00, 0.08, and 0.16 mg/L NH3).Results and Discussion: The results showed that survival rate (SUR), final body weight (FBW), weight gain (WG), and serum total protein (TP), triglycerides (TG), glucose (Glu), ornithine (Orn), citrulline (Cit) contents, and liver superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), arginase (ARG), ornithine transcarbamylase (OTC) activities decreased with the increase of ammonia levels, on the contrary, feed conversion ratio (FCR), hepatosomatic index (HSI), and serum ammonia, urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamine (Gln), arginine (Arg) contents, and liver malondialdehyde (MDA), tumor necrosis factor (TNF), interleukin (IL) 1, IL 8 contents, and mRNA expressions of cu/zn sod, cat, gpx, gr, tnf ɑ, il 1, and il 8 were significantly increased. Dietary 0.05% NCG supplementation had higher SUR, FBW, WG, feed intake (FI), whole-body protein, and serum TP, total cholesterol (TC), Glu, citrulline (Cit) contents, and liver SOD, GPx, argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), inducible nitric oxide synthase (iNOS) activities compared to 0.00% NCG group, but had lower serum ammonia, urea, ALT, AST, Gln, Arg contents, and liver MDA, TNF, IL 1, IL 8 contents, and neuronal nitric oxide synthase activity. At the end of bacterial challenge, cumulative mortality (CM) increased with ammonia levels increased, but serum antibody titer (AT), lysozyme (LYZ) activity, 50% hemolytic complement, immunoglobulin (Ig) contents, respiratory burst (RB), phagocytic indices decreased with ammonia levels increased. CM in 0.05% NCG group was lower than that in 0.00% NCG group, but serum AT, LYZ activity, Ig content, RB in 0.05% NCG group were significantly higher. The correlation analysis found that iNOS was positively correlated with ASS activity. This study indicates that dietary NCG supplementation can improve the ammonia tolerance of yellow catfish, and ASS may also be the target of NCG to activate the urea cycle

    CircANKRD52 Augments the Growth and Invasion of Melanoma Cells by Sponging miR ‐141‐3p and Upregulating PRKACB

    Get PDF
    Accumulating data have shown that circRNAs act pivotal roles in cancer progression. However, the role and molecular mechanism of circRNAs in melanoma remain undocumented. GEO dataset was used to identify the differentially expressed circRNAs between melanoma and normal tissues, and the expression and prognosis of circANKRD52 (hsa_circ_0026926) in melanoma were assessed by qRT‐PCR analysis. EdU, Transwell, Flow cytometry analysis, human umbilical vein endothelial cells (HUVECs) coculture assay as well as in vivo tumourigenesis models were utilised to assess cell growth and invasion. The specific binding between circANKRD52 and miR‐141‐3p was confirmed by bioinformatic analysis, RIP, RNA pull‐down, and luciferase reporter assays. The effect of circANKRD52 or miR‐141‐3p on PRKACB expression was evaluated by Western blot assay. We found that circANKRD52 was upregulated in melanoma tissue samples and cell lines and associated with poor survival and tumour recurrence in patients with melanoma. Knockdown of circANKRD52 repressed the growth and invasion of melanoma cells in vitro and in vivo, whereas ectopic expression of circANKRD52 promoted these effects. Moreover, circANKRD52 could bind to miR‐141‐3p, leading to upregulation of PRKACB, and downregulation of miR‐141‐3p restored melanoma cell growth and invasion. Our findings demonstrate that circANKRD52 promotes the growth and angiogenesis of melanoma cells by sponging miR‐141‐3p and upregulating PRKACB

    Exosome‐derived long non‐coding RNA AC010789.1 modified by FTO and hnRNPA2B1 accelerates growth of hair follicle stem cells against androgen alopecia by activating S100A8/Wnt/β‐catenin signalling

    Get PDF
    Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive. Methods: The expression and prognosis of lncRNA AC010789.1 in AGA hair follicle tissues were assessed by qRT‐PCR analysis. CCK‐8, EdU and Transwell analysis were utilized to assess cell growth. The specific binding between AC010789.1 and FTO mediated m6A modification or the effect of AC010789.1 on hnRNPA2B1, S100A8 and Wnt/β‐catenin signaling expression was confirmed by bioinformatic analysis, RIP, RNA pull‐down and Western blot assay. The effects of Exosome‐loaded AC010789.1 prompted HFSCs proliferation and hair follicle regeneration were confirmed in hairless mice. Results: We herein found that the mRNA levels of lncRNA AC010789.1 were decreased in AGA tissue samples but increased in HFSCs of surrounding normal tissue samples. Overexpression (OE) of AC010789.1 promoted HFSC proliferation, DNA synthesis and migration as well as K6HF and Lgr5 upregulation, whereas knockdown of AC010789.1 showed the opposite effects. The total or AC010789.1 m6A levels were reduced and FTO demethylase was upregulated in AGA tissue samples, but these indicated the reverse results in HFSCs of surrounding normal tissue samples. FTO OE decreased AC010789.1 m6A levels and its mRNA levels in HFSCs and abolished AC010789.1‐induced HFSCs proliferation. In addition, AC010789.1 was identified to bind to m6A reader hnRNPA2B1, which was downregulated in AGA but upregulated in HFSCs of surrounding normal tissue samples. hnRNPA2B1 OE attenuated AC010789.1 knockdown‐induced inhibition of HFSCs proliferation. Moreover, AC010789.1 could bind to and enhance downstream S100A8 protein expression, which mediated Wnt/β‐catenin signaling to accelerate HFSCs proliferation. Exosome‐loaded AC010789.1 prompted HFSCs proliferation and hair follicle regeneration in mice. Conclusions: Our findings demonstrated that exosome‐derived lncRNA AC010789.1 modified by FTO and hnRNPA2B1 facilitated the proliferation of human HFSCs against AGA by activating S100A8/Wnt/β‐catenin signaling. Key points: Long non‐coding RNA (lncRNA) AC010789.1 was downregulated in hair follicle tissues from androgenic alopecia (AGA) and upregulated in hair follicle stem cells (HFSCs). LncRNA AC010789.1 promoted the proliferation and migration of HFSCs. FTO/hnRNPA2B1‐mediated m6A modification of lncRNA AC010789.1 promoted HFSCs growth by activating S100A8/Wnt/β‐catenin signalling. Exosome‐derived AC010789.1 accelerated HFSCs proliferation

    Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice

    Get PDF
    The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis

    Earthquake Trauma, Overgeneral Autobiographical Memory, and Depression Among Adolescent Survivors of the Wenchuan Earthquake

    Get PDF
    Trauma has a profound impact on overgeneral autobiographical memory (OGM), which is a risk factor for depression. Violent earthquakes can cause tremendous trauma in survivors. We examined the relationship between earthquake trauma, OGM and depression in adolescent survivors of the Wenchuan earthquake in this study. OGM was assessed using the autobiographical memory test in a sample of adolescent participants who experienced the violent earthquakes in Wenchuan, China, in 2008 and control participants who had never experienced a destructive earthquake. Depression was measured using the Beck Depression Inventory-II in all participants. The results showed that compared with the adolescents with no earthquake trauma, the adolescents with earthquake trauma reported significantly more depression (d = 0.49) and overgeneral autobiographical memories (d = 0.55). Moreover, when they experienced earthquake trauma, the adolescents with low OGM did not experience more depression, but the adolescents with average and high OGM experienced more depression than the adolescents with no earthquake trauma. This finding indicated that in a non-Western cultural context, adolescents’ propensity toward OGM made them vulnerable to depression after experiencing an earthquake trauma

    CDKL1 promotes tumor proliferation and invasion in colorectal cancer

    Get PDF
    BACKGROUND: CDKL1 is a member of the cell division cycle 2 (CDC2)-related serine threonine protein kinase family and is overexpressed in malignant tumors such as melanoma, breast cancer, and gastric cancer. OBJECTIVE: This study aimed to evaluate whether CDKL1 can serve as a potential molecular target for colorectal cancer therapy. MATERIALS AND METHODS: Expression of CDKL1 in colorectal cancer tissues and cell lines was measured by immunohistochemistry and Western blot, respectively. To investigate the role of CDKL1 in colorectal cancer, CDKL1-small hairpin RNA-expressing lentivirus was constructed and infected into HCT116 and Caco2 cells. The effects of RNA interference (RNAi)-mediated CDKL1 downregulation on cell proliferation and invasion were assessed by CCK-8, colony formation, transwell, and tumorigenicity assays in nude mice. The effects of CDKL1 downregulation on cell cycle and apoptosis were analyzed by flow cytometry. Furthermore, microarray method and data analysis elucidated the molecular mechanisms underlying the phenomenon. RESULTS: CDKL1 protein was overexpressed in colorectal cancer tissues compared with paired normal tissues. Knockdown of CDKL1 in HCT116 and Caco2 significantly inhibited cell growth, colony formation ability, tumor invasion, and G1–S phase transition of the cell cycle. The knockdown of CDKL1 stimulated the upregulation of p15 and retinoblastoma protein. CONCLUSION: CDKL1 plays a vital role in tumor proliferation and invasion in colorectal cancer in vitro and in vivo and, thus, may be considered as a valuable target for therapeutic intervention

    Research Note: Association of single nucleotide polymorphism of AKT3 with egg production traits in White Muscovy ducks (Cairina moschata).

    Get PDF
    Prior studies on transcriptomes of hypothalamus and ovary revealed that AKT3 is one of the candidate genes that might affect egg production in White Muscovy ducks. The role of AKT3 in the uterus during reproductive processes cannot be overemphasized. However, functional role of this gene in the tissues and on egg production traits of Muscovy ducks remains unknown. To identify the relationship between AKT3 and egg production traits in ducks, relative expression profile was first examined prior to identifying the variants within AKT3 that may underscore egg production traits [age at first egg (AFE), number of eggs at 300 d (N300D), and number of eggs at 59 wk (N59W)] in 549 ducks. The mRNA expression of AKT3 gene in high producing (HP) ducks was significantly higher than low producing (LP) ducks in the ovary, oviduct, and hypothalamus (P \u3c 0.05 or 0.001). Three variants in AKT3 (C-3631A, C-3766T, and C-3953T) and high linkage block between C-3766T and C-3953T which are significantly (P \u3c 0.05) associated with N300D and N59W were discovered. This study elucidates novel knowledge on the molecular mechanism of AKT3 that might be regulating egg production traits in Muscovy ducks

    L-Cysteine-Derived H2S Promotes Microglia M2 Polarization via Activation of the AMPK Pathway in Hypoxia-Ischemic Neonatal Mice

    Get PDF
    We have reported previously that L-cysteine-derived hydrogen sulfide (H2S) demonstrates a remarkable neuroprotective effect against hypoxia-ischemic (HI) insult in neonatal animals. Here, we assessed some of the mechanisms of this protection as exerted by L-cysteine. Specifically, we examined the capacity for L-cysteine to stimulate microglial polarization of the M2 phenotype and its modulation of complement expression in response to HI in neonatal mice. L-cysteine treatment suppressed the production of inflammatory cytokines, while dramatically up-regulating levels of anti-inflammatory cytokines in the damaged cortex. This L-cysteine administration promoted the conversion of microglia from an inflammatory M1 to an anti-inflammatory M2 phenotype, an effect which was associated with inhibiting the p38 and/or JNK pro-inflammatory pathways, nuclear factor-κB activation and a decrease in HI-derived levels of the C1q, C3a and C3a complement receptor proteins. Notably, blockade of H2S-production clearly prevented L-cysteine-mediated M2 polarization and complement expression. L-cysteine also inhibited neuronal apoptosis as induced by conditioned media from activated M1 microglia in vitro. We also show that L-cysteine promoted AMP-activated protein kinase (AMPK) activation and the AMPK inhibitor abolished these anti-apoptotic and anti-inflammatory effects of L-cysteine. Taken together, our findings demonstrate that L-cysteine-derived H2S attenuated neuronal apoptosis after HI and suggest that these effects, in part, result from enhancing microglia M2 polarization and modulating complement expression via AMPK activation
    corecore