23,092 research outputs found

    Local temperatures of strongly-correlated quantum dots out of equilibrium

    Full text link
    Probes that measure the local thermal properties of systems out of equilibrium are emerging as new tools in the study of nanoscale systems. One can then measure the temperature of a probe that is weakly coupled to a bias-driven system. By tuning the probe temperature so that the expectation value of some observable of the system is minimally perturbed, one obtains a parameter that measures its degree of local statistical excitation, and hence its local heating. However, one anticipates that different observables may lead to different temperatures and thus different local heating expectations. We propose an experimentally realizable protocol to measure such local temperatures and apply it to bias-driven quantum dots. By means of a highly accurate open quantum system approach, we show theoretically that the measured temperature is quite insensitive both to the choice of observable and to the probe-system coupling. In particular, even with observables that are distinct both physically and in their degree of locality, such as the local magnetic susceptibility of the quantum dot and the global spin-polarized current measured at the leads, the resulting local temperatures are quantitatively similar for quantum dots ranging from noninteracting to Kondo-correlated regimes, and are close to those obtained with the traditional "local equilibrium" definition.Comment: 10 pages, 6 figure

    Entanglement detection beyond the CCNR criterion for infinite-dimensions

    Get PDF
    In this paper, in terms of the relation between the state and the reduced states of it, we obtain two inequalities which are valid for all separable states in infinite-dimensional bipartite quantum systems. One of them provides an entanglement criterion which is strictly stronger than the computable cross-norm or realignment (CCNR) criterion.Comment: 11 page

    Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties

    Get PDF
    The thermal and mechanical behavior, the water uptake (WU), and water diffusion coefficient of sulfonated poly(ether ether ketone) (SPEEK)membranes annealed at 180 degrees C for different times were explored by high-resolution thermogravimetric analysis, mechanical tensile tests, dynamic mechanical analysis, and WU measurements. The mechanical and thermal stability increased with the thermal treatment time, i.e., with the degree of crosslinking. The effect of residual casting solvent, dimethyl sulfoxide (DMSO), on the WU within SPEEK was probed. In presence of residual DMSO, crosslinked SPEEK exhibited higher water sorption at low and medium relative humidity (RH), and lower water sorption at high RH. These membranes have properties well adapted to fuel cell applications

    Use NU-WRF and GCE Model to Simulate the Precipitation Processes During MC3E Campaign

    Get PDF
    One of major CRM approaches to studying precipitation processes is sometimes referred to as "cloud ensemble modeling". This approach allows many clouds of various sizes and stages of their lifecycles to be present at any given simulation time. Large-scale effects derived from observations are imposed into CRMs as forcing, and cyclic lateral boundaries are used. The advantage of this approach is that model results in terms of rainfall and QI and Q2 usually are in good agreement with observations. In addition, the model results provide cloud statistics that represent different types of clouds/cloud systems during their lifetime (life cycle). The large-scale forcing derived from MC3EI will be used to drive GCE model simulations. The model-simulated results will be compared with observations from MC3E. These GCE model-simulated datasets are especially valuable for LH algorithm developers. In addition, the regional scale model with very high-resolution, NASA Unified WRF is also used to real time forecast during the MC3E campaign to ensure that the precipitation and other meteorological forecasts are available to the flight planning team and to interpret the forecast results in terms of proposed flight scenarios. Post Mission simulations are conducted to examine the sensitivity of initial and lateral boundary conditions to cloud and precipitation processes and rainfall. We will compare model results in terms of precipitation and surface rainfall using GCE model and NU-WR

    Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation

    Full text link
    Several recent studies performed on constraints of a fourth generation of quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds for the first three generations in the neutrino sector. Only under this assumption one is able to determine the Fermi constant G_F from the muon lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5 GeV^-2. We study how well G_F can be extracted within the framework of four generations from leptonic and radiative mu and tau decays, as well as from K_l3 decays and leptonic decays of charged pions, and we discuss the role of lepton universality tests in this context. We emphasize that constraints on a fourth generation from quark and lepton flavour observables and from electroweak precision observables can only be obtained in a consistent way if these three sectors are considered simultaneously. In the combined fit to leptonic and radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0 of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added refering to earlier related work, figures and text in discussion section added, results and conclusions unchange
    corecore