3,553 research outputs found
Recommended from our members
Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.
Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle
Correcting pervasive errors in RNA crystallography through enumerative structure prediction
Three-dimensional RNA models fitted into crystallographic density maps
exhibit pervasive conformational ambiguities, geometric errors and steric
clashes. To address these problems, we present enumerative real-space
refinement assisted by electron density under Rosetta (ERRASER), coupled to
Python-based hierarchical environment for integrated 'xtallography' (PHENIX)
diffraction-based refinement. On 24 data sets, ERRASER automatically corrects
the majority of MolProbity-assessed errors, improves the average Rfree factor,
resolves functionally important discrepancies in noncanonical structure and
refines low-resolution models to better match higher-resolution models
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
Collectio
Similarities and differences between the E5 oncoproteins of bovine papillomaviruses type 1 and type 4: Cytoskeleton, motility and invasiveness in E5-transformed bovine and mouse cells
Bovine papillomaviruses (BPVs) are oncogenic viruses. In cattle, BPV-1/2 is associated with urinary bladder cancer and BPV-4 with upper GI tract cancer. BPV E5 is a small hydrophobic protein localised in the endoplasmic reticulum (ER) and Golgi apparatus (GA). E5 is the major transforming protein of BPVs, capable of inducing cell transformation in cultured mouse fibroblasts and, in cooperation with E7, in primary bovine cells. E5-induced cell transformation is accompanied by activation of several cellular protein kinases, including growth factor receptors, and alkalinisation of endosomes and GA. We have reported that BPV E5 causes swelling and fragmentation of the GA and extensive vacuolisation of the cytoplasm. We now show that E5 from both BPV-1 and BPV-4 disturbs the actin cytoskeleton and focal adhesions in transformed bovine cells, where these morphological and behavioural characteristics are accompanied by hyperphosphorylation of the cellular phosphotyrosine kinase c-src. Both BPV-1 and BPV-4 E5 increase the motility of transformed mouse cells, but only BPV-1 E5 causes transformed mouse cells to penetrate a matrigel matrix. BPV-1 transformed mouse cells, but not BPV-4 transformed mouse cells, have hyperhpsphorylated c-src
Negotiating Difference: A Critical Discourse Analysis of Writing Center Interactions Between Peer Tutors and Multilingual Tutees
Collier (1995), Cummins (1981), and Mitchell, Destino and Karam (1997) claimed that it could take ten years for multilingual (ML) students to become proficient in academic English. In 2001, the Conference on College Composition and Communication [CCCC] Statement on Second-Language Writing and Writers asserted the same. Yet, faculty might judge the writing of ML students as deficient because they write with an “accent” (Bruce and Rafoth, 2016; Leki, 1992; Matsuda and Cox, 2011; Severino and Deifell, 2011). Consequently, ML students often seek assistance from peer tutors at the university writing center. In this dissertation, I perform a qualitative study to explore how peer tutors and ML students negotiate difference at a university writing center set in a predominantly White institution. I provide background regarding the historical approaches to tutoring. Using sociocultural theory and the Interaction Hypothesis, I understand the data of 15 hours of writing center interactions, three hours of focus group interviews, and numerous written artifacts from the ML tuteees. I also find a critical discourse analysis reveals inequalities in power and authority between the peer tutors and the ML students. In the end, I suggest paths for future research
The Effects of Participation in a Grief Choir on Perceived Grief, Coping, Energy, Social Support, and Health Among Bereaved Adults: A Mixed Methods Randomized Control Study
The purpose of this study was to test the effects of participation in a grief choir vs. verbal grief group on bereaved persons’ perceived grief, coping, energy, social support and health and to examine the experiences of those participating in both groups. In this mixed-methods study, the results from qualitative phenomenological focus groups were used to explain and interpret the findings of the Randomized Control Trial (RCT). Findings demonstrated that the grief choir may have been as effective as the verbal grief group when impacting the participants’ experience of grief
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
- …
