103 research outputs found

    Numerical modeling of the electron beam welding and its experimental validation

    Get PDF
    Electron Beam Welding (EBW) is a highly efficient and precise welding method increasingly used within the manufacturing chain and of growing importance in different industrial environments such as the aeronautical and aerospace sectors. This is because, compared to other welding processes, EBW induces lower distortions and residual stresses due to the lower and more focused heat input along the welding line. This work describes the formulation adopted for the numerical simulation of the EBW process as well as the experimental work carried out to calibrate and validate it. The numerical simulation of EBW involves the interaction of thermal, mechanical and metallurgical phenomena. For this reason, in this work the numerical framework couples the heat transfer process to the stress analysis to maximize accuracy. An in-house multi-physics FE software is used to deal with the numerical simulation. The definition of an ad hoc moving heat source is proposed to simulate the EB power surface distribution and the corresponding absorption within the work-piece thickness. Both heat conduction and heat radiation models are considered to dissipate the heat through the boundaries of the component. The material behavior is characterized by an apropos thermo-elasto-viscoplastic constitutive model. Titanium-alloy Ti6A14V is the target material of this work. From the experimental side, the EB welding machine, the vacuum chamber characteristics and the corresponding operative setting are detailed. Finally, the available facilities to record the temperature evolution at different thermo-couple locations as well as to measure both distortions and residual stresses are described. Numerical results are compared with the experimental evidence.Peer ReviewedPostprint (author's final draft

    A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces in friction stir welding

    Get PDF
    Pin geometry is a fundamental consideration in friction stir welding (FSW). It influences the thermal behaviour, material flow and forces during the weld and reflects on the joint quality. This work studies four pin tools with circular, triflute, trivex, and triangular profiles adopting a validated model of FSW process developed by the authors. The effect of the rotating tool geometry on the flow behaviour and process outcomes is analysed. Additionally, longitudinal and transversal forces and torque are numerically calculated and compared for the different pin shapes. The study is carried out for slip and stick limiting friction cases between pin and workpiece. The main novelties of the paper are a “speed-up” two-stage simulation methodology and a piecewise linear version of the constitutive model, both of them conceived for the use in real case industrial applications, where the achievement of accuracy with affordable simulation times is of importance. The Norton-Hoff constitutive model is adopted to characterize the material behaviour during the weld. The piecewise linear version of the model developed by the authors greatly facilitates the convergence of the numerical solution ensuring both computational efficiency and accuracy. A two-stage computational procedure is applied. In the first stage, a forced transient is carried out; in the second one, the magnitudes of interest are computed. The study shows that the proposed modelling approach can be used to predict and interpret the FSW behaviour for a specific pin geometry. Moreover, the reduction of the simulation time using the two-stage strategy can be up to 90%, compared to a standard single stage strategy.Peer ReviewedPostprint (author's final draft

    Material flow visualization in Friction Stir Welding via particle tracing

    Get PDF
    This work deals with the modeling of the material flow in Friction Stir Welding (FSW) processes using particle tracing method. For the computation of particle trajectories, three accurate and computationally efficient integration methods are implemented within a FE model for FSW process: the Backward Euler with Sub-stepping (BES), the 4-th order Runge-Kutta (RK4) and the Back and Forth Error Compensation and Correction (BFECC) methods. Firstly, their performance is compared by solving the Zalesak's disk benchmark. Later, the developed methodology is applied to some FSW problems providing a quantitative 2D and 3D view of the material transport in the process area. The material flow pattern is compared to the experimental evidence.Peer ReviewedPostprint (author’s final draft

    Numerical modelling of microstructure evolution in Friction Stir Welding (FSW)"

    Get PDF
    This work studies the metallurgical and microstructural aspects of Friction Stir Welding (FSW) in terms of grain size and microhardness. The modelling is based on the combination of an apropos kinematic framework for the local simulation of FSW processes and a material particle tracing technique for tracking the material flow during the weld. The resulting grain size and microhardness values are validated with experimental observations from an identical processed sample. A Sheppard-Wright constitutive relation is adopted to describe the mechanical behavior of AZ31 Mg alloy considered in this work. The strain rate and temperature histories obtained from the numerical model are stored on the tracers. The relationship among the grain size, microhardness, strain rate, and temperature is obtained using Zener-Hollomon parameter and Hall-Petch relationship. A linear description relates the logarithm of average grain size to the logarithm of Zener-Hollomon parameter. The relationship between microhardness and average grain size stands away from the linear trend

    Bio-inspired design to support reduced energy consumption via the ‘light weighting’ of machine system elements

    Get PDF
    A potential technique to reduce the energy required to actuate moving parts in a machine is to reduce their mass. This paper presents initial research attempting to answer this question for robotic arm application using a biologically inspired approach. Investigation identified some potential biological solutions for tubular structures. From analysis of the properties of these biological models, the physical principles were deduced and abstracted into computer-aided design models for testing using finite element analysis. Three of the best performing design solutions were manufactured and physically tested. Findings showed that the biomimetic structures reached at least the same efficiency of conventional tubular structures regarding the ratio of maximum load and weight

    A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces during friction stir welding

    Get PDF
    Pin geometry is a fundamental consideration in friction stir welding (FSW). It influences the thermal behaviour, material flow and forces during the weld and reflects on the joint quality. This work studies four pin tools with circular, triflute, trivex, and triangular profiles adopting a validated model of FSW process developed by the authors. The effect of the rotating tool geometry on the flow behaviour and process outcomes is analysed. Additionally, longitudinal and transversal forces and torque are numerically calculated and compared for the different pin shapes. The study is carried out for slip and stick limiting friction cases between pin and workpiece. The main novelties of the paper are a “speed-up” two-stage simulation methodology and a piecewise linear version of the constitutive model, both of them conceived for the use in real case industrial applications, where the achievement of accuracy with affordable simulation times is of importance. The Norton-Hoff constitutive model is adopted to characterize the material behaviour during the weld. The piecewise linear version of the model developed by the authors greatly facilitates the convergence of the numerical solution ensuring both computational efficiency and accuracy. A two-stage computational procedure is applied. In the first stage, a forced transient is carried out; in the second one, the magnitudes of interest are computed. The study shows that the proposed modelling approach can be used to predict and interpret the FSW behaviour for a specific pin geometry. Moreover, the reduction of the simulation time using the two-stage strategy can be up to 90%, compared to a standard single stage strategy

    Numerical modeling of friction stir welding processes

    Get PDF
    This work describes the formulation adopted for the numerical simulation of the friction stir welding (FSW) process. FSW is a solid-state joining process (the metal is not melted during the process) devised for applications where the original metallurgical characteristics must be retained. This process is primarily used on aluminum alloys, and most often on large pieces which cannot be easily heat treated to recover temper characteristics. Heat is either induced by the friction between the tool shoulder and the work pieces or generated by the mechanical mixing (stirring and forging) process without reaching the melting point (solid-state process). To simulate this kind of welding process, a fully coupled thermo-mechanical solution is adopted. A sliding mesh, rotating together with the pin (ALE formulation), is used to avoid the extremely large distortions of the mesh around the tool in the so called stirring zone while the rest of the mesh of the sheet is fixed (Eulerian formulation). The orthogonal subgrid scale (OSS) technique is used to stabilize the mixed velocity–pressure formulation adopted to solve the Stokes problem. This stabilized formulation can deal with the incompressible behavior of the material allowing for equal linear interpolation for both the velocity and the pressure fields. The material behavior is characterized either by Norton–Hoff or Sheppard–Wright rigid thermo-visco-plastic constitutive models. Both the frictional heating due to the contact interaction between the surface of the tool and the sheet, and the heat induced by the visco-plastic dissipation of the stirring material have been taken into account. Heat convection and heat radiation models are used to dissipate the heat through the boundaries. Both the streamline-upwind/Petrov–Galerkin (SUPG) formulation and the OSS stabilization technique have been implemented to stabilize the convective term in the balance of energy equation. The numerical simulations presented are intended to show the accuracy of the proposed methodology and its capability to study real FSW processes where a non-circular pin is often used

    Challenges in thermo-mechanical analysis of Friction Stir Welding processes

    Get PDF
    This paper deals with the numerical simulation of friction stir welding (FSW) processes. FSW techniques are used in many industrial applications and particularly in the aeronautic and aerospace industries, where the quality of the joining is of essential importance. The analysis is focused either at global level, considering the full component to be jointed, or locally, studying more in detail the heat affected zone (HAZ). The analysis at global (structural component) level is performed defining the problem in the Lagrangian setting while, at local level, an apropos kinematic framework which makes use of an efficient combination of Lagrangian (pin), Eulerian (metal sheet) and ALE (stirring zone) descriptions for the different computational sub-domains is introduced for the numerical modeling. As a result, the analysis can deal with complex (non-cylindrical) pin-shapes and the extremely large deformation of the material at the HAZ without requiring any remeshing or remapping tools. A fully coupled thermo-mechanical framework is proposed for the computational modeling of the FSW processes proposed both at local and global level. A staggered algorithm based on an isothermal fractional step method is introduced. To account for the isochoric behavior of the material when the temperature range is close to the melting point or due to the predominant deviatoric deformations induced by the visco-plastic response, a mixed finite element technology is introduced. The Variational Multi Scale method is used to circumvent the LBB stability condition allowing the use of linear/linear P1/P1 interpolations for displacement (or velocity, ALE/Eulerian formulation) and pressure fields, respectively. The same stabilization strategy is adopted to tackle the instabilities of the temperature field, inherent characteristic of convective dominated problems (thermal analysis in ALE/Eulerian kinematic framework). At global level, the material behavior is characterized by a thermo–elasto–viscoplastic constitutive model. The analysis at local level is characterized by a rigid thermo–visco-plastic constitutive model. Different thermally coupled (non-Newtonian) fluid-like models as Norton–Hoff, Carreau or Sheppard–Wright, among others are tested. To better understand the material flow pattern in the stirring zone, a (Lagrangian based) particle tracing is carried out while post-processing FSW results. A coupling strategy between the analysis of the process zone nearby the pin-tool (local level analysis) and the simulation carried out for the entire structure to be welded (global level analysis) is implemented to accurately predict the temperature histories and, thereby, the residual stresses in FSW

    An apropos kinematic framework for the numerical modelling of Friction Stir Welding

    Get PDF
    This paper describes features of a fully coupled thermo-mechanical model for Friction Stir Welding (FSW) simulation. An apropos kinematic setting for different zones of the computational domain is introduced and an efficient coupling strategy is proposed. Heat generation via viscous dissipation as well as frictional heating is considered. The results of the simulation using the proposed model are compared with the experimental evidence. The effect of slip and stick condition on non-circular pin shapes is analyzed. Simulation of material stirring is also carried out via particle tracing, providing insight of the material flow pattern in the vicinity of the pin

    Experimental validation of a FSW model with an enhanced friction model: application to a threaded cylindrical pin tool

    Get PDF
    This work adopts a fast and accurate two-stage computational strategy for the analysis of FSW (Friction stir welding) processes using threaded cylindrical pin tools. The coupled thermo-mechanical problem is equipped with an enhanced friction model to include the effect of non-uniform pressure distribution under the pin shoulder. The overall numerical strategy is successfully validated by the experimental measurements provided by the industrial partner (Sapa). The verification of the numerical model using the experimental evidence is not only accomplished in terms of temperature evolution but also in terms of torque, longitudinal, transversal and vertical forces
    corecore