295 research outputs found
Language needs in business, a survey of european multinational companies
This survey of language needs was carried out to help create a better match between the actual use of foreign languages in their working environment and the training of future managers within the CEMS programme.language skills business; communication skills; multinational companies
Elementary structural building blocks encountered in silicon surface reconstructions
Driven by the reduction of dangling bonds and the minimization of surface
stress, reconstruction of silicon surfaces leads to a striking diversity of
outcomes. Despite this variety even very elaborate structures are generally
comprised of a small number of structural building blocks. We here identify
important elementary building blocks and discuss their integration into the
structural models as well as their impact on the electronic structure of the
surface
STM microscopy of the CDW in 1T-TiSe2 in the presence of single atom defects
We present a detailed low temperature scanning tunneling microscopy study of
the commensurate charge density wave (CDW) in 1-TiSe in the presence of
single atom defects. We find no significant modification of the CDW lattice in
single crystals with native defects concentrations where some bulk probes
already measure substantial reductions in the CDW phase transition signature.
Systematic analysis of STM micrographs combined with density functional theory
modelling of atomic defect patterns indicate that the observed CDW modulation
lies in the Se surface layer. The defect patterns clearly show there are no
2-polytype inclusions in the CDW phase, as previously found at room
temperature [Titov A.N. et al, Phys. Sol. State 53, 1073 (2011). They further
provide an alternative explanation for the chiral Friedel oscillations recently
reported in this compound [J. Ishioka et al., Phys. Rev. B 84, 245125, (2011)].Comment: 5 pages, 4 figure
Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach
Recently strong evidence has been found in favor of a BCS-like condensation
of excitons in 1\textit{T}-TiSe. Theoretical photoemission intensity maps
have been generated by the spectral function calculated within the excitonic
condensate phase model and set against experimental angle-resolved
photoemission spectroscopy data. Here, the calculations in the framework of
this model are presented in detail. They represent an extension of the original
excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf
158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A
detailed analysis of its properties and further comparison with experiment are
also discussedComment: Submitted to PRB, 11 pages, 7 figure
Doping nature of native defects in 1T-TiSe2
The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional
layered material with a charge density wave (CDW) transition temperature of
TCDW 200 K. Self-doping effects for crystals grown at different temperatures
introduce structural defects, modify the temperature dependent resistivity and
strongly perturbate the CDW phase. Here we study the structural and doping
nature of such native defects combining scanning tunneling
microscopy/spectroscopy and ab initio calculations. The dominant native single
atom dopants we identify in our single crystals are intercalated Ti atoms, Se
vacancies and Se substitutions by residual iodine and oxygen.Comment: 5 pages, 3 figure
A new structural model for the Si(331)-(12x1) reconstruction
A new structural model for the Si(331)-(12x1) reconstruction is proposed.
Based on scanning tunneling microscopy images of unprecedented resolution,
low-energy electron diffraction data, and first-principles total-energy
calculations, we demonstrate that the reconstructed Si(331) surface shares the
same elementary building blocks as the Si(110)-(16x2) surface, establishing the
pentamer as a universal building block for complex silicon surface
reconstructions
Temperature dependence of the excitonic insulator phase model in 1T-TiSe2
Recently, detailed calculations of the excitonic insulator phase model
adapted to the case of 1\textit{T}-TiSe have been presented. Through the
spectral function theoretical photoemission intensity maps can be generated
which are in very good agreement with experiment [Phys. Rev. Lett. {\bf 99},
(2007) 146403]. In this model, excitons condensate in a BCS-like manner and
give rise to a charge density wave, characterized by an order parameter. Here,
we assume an analytical form of the order parameter, allowing to perform
temperature dependent calculations. The influence of this order parameter on
the electronic spectral function, to be observed in photoemission spectra, is
discussed. The resulting chemical potential shift and an estimation of the
resistivity are also shown.Comment: 4 pages, 3 figures, paper submitted at the Strongly Correlated
Electron System conference, Brazil, 200
Temperature dependent photoemission on 1T-TiSe2: Interpretation within the exciton condensate phase model
The charge density wave phase transition of 1T-TiSe2 is studied by
angle-resolved photoemission over a wide temperature range. An important
chemical potential shift which strongly evolves with temperature is evidenced.
In the framework of the exciton condensate phase, the detailed temperature
dependence of the associated order parameter is extracted. Having a
mean-field-like behaviour at low temperature, it exhibits a non-zero value
above the transition, interpreted as the signature of strong excitonic
fluctuations, reminiscent of the pseudo-gap phase of high temperature
superconductors. Integrated intensity around the Fermi level is found to
display a trend similar to the measured resistivity and is discussed within the
model.Comment: 8 pages, 6 figure
Excited states at interfaces of a metal-supported ultrathin oxide film
We report layer-resolved measurements of the unoccupied electronic structure of ultrathin MgO films grown on Ag(001). The metal-induced gap states at the metal/oxide interface, the oxide band gap, and a surface core exciton involving an image-potential state of the vacuum are revealed through resonant Auger spectroscopy of the MgKL23L23 Auger transition. Our results demonstrate how to obtain new insights on empty states at interfaces of metal-supported ultrathin oxide films
- …
