1,467 research outputs found
Netzgestützte Videofallarbeit. Ein didaktisches Konzept zur Kompetenzentwicklung von Lehrenden
Wie können Lehrende in ihrer Kompetenz zur Gestaltung von Lehr-Lernprozessen gefördert werden? Welche Möglichkeiten und Vorteile eröffnet fallbasiertes Lernen? Und: Was leistet curriculumtheoretische Didaktik? In diesem Beitrag wird das Konzept netzgestützter Videofallarbeit am Beispiel des Online-Fall-Laboratoriums vorgestellt. Es basiert auf realen Fällen aus der Bildungspraxis, die als Videos vorliegen und in eine Internet basierte Lernumgebung eingebunden sind. Mittels Analyse und Diskussion dieser realen, medial dokumentierten Fälle können unterrichtsbezogene, didaktische oder lehr-lerntheoretische Fragestellungen bearbeitet werden. Damit wird fallbasiertes Lernen, das in vielen Berufsfeldern bereits eine zentrale Bedeutung einnimmt, auch für die Erwachsenenbildung zeitlich und örtlich flexibel einsetzbar. Der Beitrag stellt das Konzept der Videofallarbeit in seinen an die curriculumtheoretische Didaktik angelegten Grundzügen vor und berichtet erste allgemeine Befunde zu dessen Erprobung in der Praxis. (DIPF/Orig.
Fast Poisson Noise Removal by Biorthogonal Haar Domain Hypothesis Testing
Methods based on hypothesis tests (HTs) in the Haar domain are widely used to
denoise Poisson count data. Facing large datasets or real-time applications,
Haar-based denoisers have to use the decimated transform to meet limited-memory
or computation-time constraints. Unfortunately, for regular underlying
intensities, decimation yields discontinuous estimates and strong "staircase"
artifacts. In this paper, we propose to combine the HT framework with the
decimated biorthogonal Haar (Bi-Haar) transform instead of the classical Haar.
The Bi-Haar filter bank is normalized such that the p-values of Bi-Haar
coefficients (pBH) provide good approximation to those of Haar (pH) for
high-intensity settings or large scales; for low-intensity settings and small
scales, we show that pBH are essentially upper-bounded by pH. Thus, we may
apply the Haar-based HTs to Bi-Haar coefficients to control a prefixed false
positive rate. By doing so, we benefit from the regular Bi-Haar filter bank to
gain a smooth estimate while always maintaining a low computational complexity.
A Fisher-approximation-based threshold imple- menting the HTs is also
established. The efficiency of this method is illustrated on an example of
hyperspectral-source-flux estimation
What can GLAST say about the origin of cosmic rays in other galaxies ?
Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data
from radio and X-ray bands, provide a powerful tool for studying the origin of
cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds.
Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these
galaxies and measure the spectrum and intensity of diffuse gamma radiation from
the collisions of cosmic rays with gas and dust in them. Observations of
Andromeda will give an external perspective on a spiral galaxy like the Milky
Way. Observations of the Magellanic Clouds will permit a study of cosmic rays
in dwarf irregular galaxies, where the confinement is certainly different and
the massive star formation rate is much greater.Comment: 4 pages including 6 figures; to appear in Proc. ACE-2000 Symp. "The
Acceleration and Transport of Energetic Particles Observed in the
Heliosphere" (Jan. 5-8, 2000, Indian Wells, CA), AIP Conf. Proc. More details
can be found at the LHEA GLAST page at
http://lhea-glast.gsfc.nasa.gov/pub/science/index.htm
Developing the Galactic diffuse emission model for the GLAST Large Area Telescope
Diffuse emission is produced in energetic cosmic ray (CR) interactions,
mainly protons and electrons, with the interstellar gas and radiation field and
contains the information about particle spectra in distant regions of the
Galaxy. It may also contain information about exotic processes such as dark
matter annihilation, black hole evaporation etc. A model of the diffuse
emission is important for determination of the source positions and spectra.
Calculation of the Galactic diffuse continuum gamma-ray emission requires a
model for CR propagation as the first step. Such a model is based on theory of
particle transport in the interstellar medium as well as on many kinds of data
provided by different experiments in Astrophysics and Particle and Nuclear
Physics. Such data include: secondary particle and isotopic production cross
sections, total interaction nuclear cross sections and lifetimes of radioactive
species, gas mass calibrations and gas distribution in the Galaxy (H_2, H I, H
II), interstellar radiation field, CR source distribution and particle spectra
at the sources, magnetic field, energy losses, gamma-ray and synchrotron
production mechanisms, and many other issues. We are continuously improving the
GALPROP model and the code to keep up with a flow of new data. Improvement in
any field may affect the Galactic diffuse continuum gamma-ray emission model
used as a background model by the GLAST LAT instrument. Here we report about
the latest improvements of the GALPROP and the diffuse emission model.Comment: 2 pages, 2 figures; to appear in the Proc. of the First Int. GLAST
Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan,
AIP Conf. Pro
A future very-high-energy view of our Galaxy
The survey of the inner Galaxy with H.E.S.S. was remarkably successful in
detecting a wide range of new very-high-energy gamma-ray sources. New TeV
gamma-ray emitting source classes were established, although several of the
sources remain unidentified, and progress has been made in understanding
particle acceleration in astrophysical sources. In this work, we constructed a
model of a population of such very-high-energy gamma-ray emitters and
normalised the flux and size distribution of this population model to the
H.E.S.S.-discovered sources. Extrapolating that population of objects to lower
flux levels we investigate what a future array of imaging atmospheric
telescopes (IACTs) such as AGIS or CTA might detect in a survey of the Inner
Galaxy with an order of magnitude improvement in sensitivity. The sheer number
of sources detected together with the improved resolving power will likely
result in a huge improvement in our understanding of the populations of
galactic gamma-ray sources. A deep survey of the inner Milky Way would also
support studies of the interstellar diffuse gamma-ray emission in regions of
high cosmic-ray density. In the final section of this paper we investigate the
science potential for the Galactic Centre region for studying energy-dependent
diffusion with such a future array.Comment: Proceeding of "Heidelberg International Symposium on High Energy
Gamma-Ray Astronomy", held in Heidelberg, 7-11 July 2008, submitted to AIP
Conference Proceedings. 4 pages, 4 figure
- …
