2,124 research outputs found
Natural Notation for the Domestic Internet of Things
This study explores the use of natural language to give instructions that
might be interpreted by Internet of Things (IoT) devices in a domestic `smart
home' environment. We start from the proposition that reminders can be
considered as a type of end-user programming, in which the executed actions
might be performed either by an automated agent or by the author of the
reminder. We conducted an experiment in which people wrote sticky notes
specifying future actions in their home. In different conditions, these notes
were addressed to themselves, to others, or to a computer agent.We analyse the
linguistic features and strategies that are used to achieve these tasks,
including the use of graphical resources as an informal visual language. The
findings provide a basis for design guidance related to end-user development
for the Internet of Things.Comment: Proceedings of the 5th International symposium on End-User
Development (IS-EUD), Madrid, Spain, May, 201
Detection of Lyman-Alpha Emission From a Triple Imaged z=6.85 Galaxy Behind MACS J2129.4-0741
We report the detection of Ly emission at \AA{} in the
Keck/DEIMOS and \HST WFC3 G102 grism data from a triply-imaged galaxy at
behind galaxy cluster MACS J2129.40741. Combining the
emission line wavelength with broadband photometry, line ratio upper limits,
and lens modeling, we rule out the scenario that this emission line is \oii at
. After accounting for magnification, we calculate the weighted average
of the intrinsic Ly luminosity to be
and Ly equivalent
width to be \AA{}. Its intrinsic UV absolute magnitude at 1600\AA{} is
mag and stellar mass , making
it one of the faintest (intrinsic ) galaxies with
Ly detection at to date. Its stellar mass is in the typical
range for the galaxies thought to dominate the reionization photon budget at
; the inferred Ly escape fraction is high (\%),
which could be common for sub- galaxies with Ly
emission. This galaxy offers a glimpse of the galaxy population that is thought
to drive reionization, and it shows that gravitational lensing is an important
avenue to probe the sub- galaxy population.Comment: Accepted by ApJ Letter
Sensitivity of the Atlantic meridional overturning circulation to South Atlantic freshwater anomalies
The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic. <br/
Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle
We reconsider the problem of the stability of the thermohaline circulation as
described by a two-dimensional Boussinesq model with mixed boundary conditions.
We determine how the stability properties of the system depend on the intensity
of the hydrological cycle. We define a two-dimensional parameters' space
descriptive of the hydrology of the system and determine, by considering
suitable quasi-static perturbations, a bounded region where multiple equilibria
of the system are realized. We then focus on how the response of the system to
finite-amplitude surface freshwater forcings depends on their rate of increase.
We show that it is possible to define a robust separation between slow and fast
regimes of forcing. Such separation is obtained by singling out an estimate of
the critical growth rate for the anomalous forcing, which can be related to the
characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy
Seeing Tree Structure from Vibration
Humans recognize object structure from both their appearance and motion;
often, motion helps to resolve ambiguities in object structure that arise when
we observe object appearance only. There are particular scenarios, however,
where neither appearance nor spatial-temporal motion signals are informative:
occluding twigs may look connected and have almost identical movements, though
they belong to different, possibly disconnected branches. We propose to tackle
this problem through spectrum analysis of motion signals, because vibrations of
disconnected branches, though visually similar, often have distinctive natural
frequencies. We propose a novel formulation of tree structure based on a
physics-based link model, and validate its effectiveness by theoretical
analysis, numerical simulation, and empirical experiments. With this
formulation, we use nonparametric Bayesian inference to reconstruct tree
structure from both spectral vibration signals and appearance cues. Our model
performs well in recognizing hierarchical tree structure from real-world videos
of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work.
Project page: http://tree.csail.mit.edu
Crystal Structures of Native and Inactivated cis-3-Chloroacrylic Acid Dehalogenase. Structural Basis for Substrate Specificity and Inactivation by (R)-Oxirane-2-Carboxylate
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor
Modeling the dynamics of glacial cycles
This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods
Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres
There is increasing evidence that entropy can induce microphase separation in
binary fluid mixtures interacting through hard particle potentials. One such
phase consists of alternating two dimensional liquid-like layers of rods and
spheres. We study the transition from a uniform miscible state to this ordered
state using computer simulations and compare results to experiments and theory.
We conclude that (1) there is stable entropy driven microphase separation in
mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod
length decreases the total volume fraction needed for the formation of a
layered phase, therefore small spheres effectively stabilize the layered phase;
the opposite is true for large spheres and (3) the degree of this stabilization
increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website
http://www.elsie.brandeis.ed
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
- …
