840 research outputs found
In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments
International audienceHistoric monuments have been partly built since antiquity with iron or steel reinforcements sealed in mortars or hydraulic binders. But the presence of chloride in the environment can weaken the structures due to the corrosion of these metallic parts, leading to the cracking of the binder. In this context, in order to better understand the first steps of these corrosion mechanisms a chemical cell was designed to operate in situ analyses of the phases precipitated when a chlorinated solution is introduced in the vicinity of the bar. The chemical and structural characterization (micro-XRF and micro-XRD respectively) was performed under synchrotron radiation at the SOLEIL-DiffAbs beamline. Moreover, complementary SEM-EDS analyses were carried out before and after the in situ cell experiment in order to determine the final localisation of the corrosion products inside the crack network. The results show that iron can spread up to 1 mm away from the metallic bar inside the pores of the binder after 44 h of corrosion. Moreover, in accordance with laboratory experiments conducted in solution in the presence of Fe2+ and Cl- ions the reaction pathways conduct to the successive formation of an intermediate Fe(ii)-Fe(iii) chlorinated green rust which transforms into ferric oxyhydroxides such as akaganeite or goethite depending on the local concentration of iron
How the Replica-Symmetry-Breaking Transition Looks Like in Finite-Size Simulations
Finite-size effects in the mean-field Ising spin glass and the mean-field
three-state Potts glass are investigated by Monte Carlo simulations. In the
thermodynamic limit, each model is known to exhibit a continuous phase
transition into the ordered state with a full and a one-step replica-symmetry
breaking (RSB), respectively. In the Ising case, Binder parameter g calculated
for various finite sizes remains positive at any temperature and crosses at the
transition point, while in the Potts case g develops a negative dip without
showing a crossing in the g>0 region. By contrast, non-self averaging
parameters always remain positive and show a clear crossing at the transition
temperature in both cases. Our finding suggests that care should be taken in
interpreting the numerical data of the Binder parameter, particularly when the
system exhibits a one-step-like RSB.Comment: 7 pages, 8 figure
Exactly Solvable Models: The Road Towards a Rigorous Treatment of Phase Transitions in Finite Systems
We discuss exact analytical solutions of a variety of statistical models
recently obtained for finite systems by a novel powerful mathematical method,
the Laplace-Fourier transform. Among them are a constrained version of the
statistical multifragmentation model, the Gas of Bags Model and the Hills and
Dales Model of surface partition. Thus, the Laplace-Fourier transform allows
one to study the nuclear matter equation of state, the equation of state of
hadronic and quark gluon matter and surface partitions on the same footing. A
complete analysis of the isobaric partition singularities of these models is
done for finite systems. The developed formalism allows us, for the first time,
to exactly define the finite volume analogs of gaseous, liquid and mixed phases
of these models from the first principles of statistical mechanics and
demonstrate the pitfalls of earlier works. The found solutions may be used for
building up a new theoretical apparatus to rigorously study phase transitions
in finite systems. The strategic directions of future research opened by these
exact results are also discussed.Comment: Contribution to the ``World Consensus Initiative III, Texas A & M
University, College Station, Texas, USA, February 11-17, 2005, 21
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
The s Process: Nuclear Physics, Stellar Models, Observations
Nucleosynthesis in the s process takes place in the He burning layers of low
mass AGB stars and during the He and C burning phases of massive stars. The s
process contributes about half of the element abundances between Cu and Bi in
solar system material. Depending on stellar mass and metallicity the resulting
s-abundance patterns exhibit characteristic features, which provide
comprehensive information for our understanding of the stellar life cycle and
for the chemical evolution of galaxies. The rapidly growing body of detailed
abundance observations, in particular for AGB and post-AGB stars, for objects
in binary systems, and for the very faint metal-poor population represents
exciting challenges and constraints for stellar model calculations. Based on
updated and improved nuclear physics data for the s-process reaction network,
current models are aiming at ab initio solution for the stellar physics related
to convection and mixing processes. Progress in the intimately related areas of
observations, nuclear and atomic physics, and stellar modeling is reviewed and
the corresponding interplay is illustrated by the general abundance patterns of
the elements beyond iron and by the effect of sensitive branching points along
the s-process path. The strong variations of the s-process efficiency with
metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte
The (234)U neutron capture cross section measurement at the n_TOF facility
The neutron capture cross-section of (234)U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n_TOF, based on a spallation source located at CERN. A 4 pi BaF(2) array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt gamma-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n_TOF facility and the TAC
Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF
The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
- …
