253 research outputs found

    Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    Get PDF
    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.journal articl

    Patient-specific RF safety assessment in MRI: Progress in creating surface-based human head and shoulder models

    No full text
    The interaction of electromagnetic (EM) fields with the human body during magnetic resonance imaging (MRI) is complex and subject specific. MRI radiofrequency (RF) coil performance and safety assessment typically includes numerical EM simulations with a set of human body models. The dimensions of mesh elements used for discretization of the EM simulation domain must be adequate for correct representation of the MRI coil elements, different types of human tissue, and wires and electrodes of additional devices. Examples of such devices include those used during electroencephalography, transcranial magnetic stimulation, and transcranial direct current stimulation, which record complementary information or manipulate brain states during MRI measurement. The electrical contact within and between tissues, as well as between an electrode and the skin, must also be preserved. These requirements can be fulfilled with anatomically correct surface-based human models and EM solvers based on unstructured meshes. Here, we report (i) our workflow used to generate the surface meshes of a head and torso model from the segmented AustinMan dataset, (ii) head and torso model mesh optimization for three-dimensional EM simulation in ANSYS HFSS, and (iii) several case studies of MRI RF coil performance and safety assessment

    Risks for Central Nervous System Diseases among Mobile Phone Subscribers: A Danish Retrospective Cohort Study

    Get PDF
    The aim of this study was to investigate a possible link between cellular telephone use and risks for various diseases of the central nervous system (CNS). We conducted a large nationwide cohort study of 420 095 persons whose first cellular telephone subscription was between 1982 and 1995, who were followed through 2003 for hospital contacts for a diagnosis of a CNS disorder. Standardized hospitalization ratios (SHRs) were derived by dividing the number of hospital contacts in the cohort by the number expected in the Danish population. The SHRs were increased by 10–20% for migraine and vertigo. No associations were seen for amyotrophic lateral sclerosis, multiple sclerosis or epilepsy in women. SHRs decreased by 30–40% were observed for dementia (Alzheimer disease, vascular and other dementia), Parkinson disease and epilepsy among men. In analyses restricted to subscribers of 10 years or more, the SHRs remained similarly increased for migraine and vertigo and similarly decreased for Alzheimer disease and other dementia and epilepsy (in men); the other SHRs were close to unity. In conclusion, the excesses of migraine and vertigo observed in this first study on cellular telephones and CNS disease deserve further attention. An interplay of a healthy cohort effect and reversed causation bias due to prodromal symptoms impedes detection of a possible association with dementia and Parkinson disease. Identification of the factors that result in a healthy cohort might be of interest for elucidation of the etiology of these diseases
    corecore