679 research outputs found
Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods
Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised) with respect to model inputs. In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations) but didactic application case. It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run) and the singular value decomposition (SVD) of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation. For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers) is adopted. Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting
The Magnus representation and higher-order Alexander invariants for homology cobordisms of surfaces
The set of homology cobordisms from a surface to itself with markings of
their boundaries has a natural monoid structure. To investigate the structure
of this monoid, we define and study its Magnus representation and Reidemeister
torsion invariants by generalizing Kirk-Livingston-Wang's argument over the
Gassner representation of string links. Moreover, by applying Cochran and
Harvey's framework of higher-order (non-commutative) Alexander invariants to
them, we extract several pieces of information about the monoid and related
objects.Comment: 28 pages. The whole paper has been rewritten, and the title has been
change
Optimal solution error covariance in highly nonlinear problems of variational data assimilation
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem (see, e.g.[1]) to find the initial condition, boundary conditions or model parameters. The input data contain observation and background errors, hence there is an error in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can be approximated by the inverse Hessian of the cost functional of an auxiliary data assimilation problem ([2], [3]). The relationship between the optimal solution error covariance matrix and the Hessian of the auxiliary control problem is discussed for different degrees of validity of the tangent linear hypothesis. For problems with strongly nonlinear dynamics a new statistical method based on computation of a sample of inverse Hessians is suggested. This method relies on the efficient computation of the inverse Hessian by means of iterative methods (Lanczos and quasi-Newton BFGS) with preconditioning. The method allows us to get a sensible approximation of the posterior covariance matrix with a small sample size. Numerical examples are presented for the model governed by Burgers equation with a nonlinear viscous term. The first author acknowledges the funding through the project 09-01-00284 of the Russian Foundation for Basic Research, and the FCP program "Kadry"
Homology cylinders and the acyclic closure of a free group
We give a Dehn-Nielsen type theorem for the homology cobordism group of
homology cylinders by considering its action on the acyclic closure, which was
defined by Levine, of a free group. Then we construct an additive invariant of
those homology cylinders which act on the acyclic closure trivially. We also
describe some tools to study the automorphism group of the acyclic closure of a
free group generalizing those for the automorphism group of a free group or the
homology cobordism group of homology cylinders.Comment: This is the version published by Algebraic & Geometric Topology on 7
April 200
On optimal solution error covariances in variational data assimilation problems
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find unknown parameters such as distributed model coefficients or boundary conditions. The equation for the optimal solution error is derived through the errors of the input data (background and observation errors), and the optimal solution error covariance operator through the input data error covariance operators, respectively. The quasi-Newton BFGS algorithm is adapted to construct the covariance matrix of the optimal solution error using the inverse Hessian of an auxiliary data assimilation problem based on the tangent linear model constraints. Preconditioning is applied to reduce the number of iterations required by the BFGS algorithm to build a quasi-Newton approximation of the inverse Hessian. Numerical examples are presented for the one-dimensional convection-diffusion model
On deterministic error analysis in variational data assimilation
International audienceThe problem of variational data assimilation for a nonlinear evolution model is considered to identify the initial condition. The equation for the error of the optimal initial-value function through the errors of the input data is derived, based on the Hessian of the misfit functional and the second order adjoint techniques. The fundamental control functions are introduced to be used for error analysis. The sensitivity of the optimal solution to the input data (observation and model errors, background errors) is studied using the singular vectors of the specific response operators in the error equation. The relation between "quality of the model" and "quality of the prediction" via data assimilation is discussed
On model error in variational data assimilation
[Departement_IRSTEA]Eaux [TR1_IRSTEA]GEUSIInternational audienceThe problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition. The optimal solution (analysis) error arises due to the errors in the input data (background and observation errors). Under the Gaussian assumption the optimal solution error covariance can be constructed using the Hessian of the auxiliary data assimilation problem. The aim of this paper is to study the evolution of model errors via data assimilation. The optimal solution error covariances are derived in the case of imperfect model and for the weak constraint formulation, when the model euations determine the cost functional
Variational data assimilation for 2D fluvial hydraulics simulations
International audienceA numerical method for model parameters identification is presented for a river model based on a finite volume discretization of the bidimensional shallow water equations. We use variational data assimilation to combine optimally physical information from the model and observation data of the physical system in order to identify the value of model inputs that correspond to a numerical simulation which is consistent with reality. Two numerical examples demonstrate the efficiency of the method for the identification of the inlet discharge and the bed elevation. An application to real data on the Pearl River for the identification of boundary conditions is presented
Sensitivity And Out-Of-Sample Error in Continuous Time Data Assimilation
Data assimilation refers to the problem of finding trajectories of a
prescribed dynamical model in such a way that the output of the model (usually
some function of the model states) follows a given time series of observations.
Typically though, these two requirements cannot both be met at the same
time--tracking the observations is not possible without the trajectory
deviating from the proposed model equations, while adherence to the model
requires deviations from the observations. Thus, data assimilation faces a
trade-off. In this contribution, the sensitivity of the data assimilation with
respect to perturbations in the observations is identified as the parameter
which controls the trade-off. A relation between the sensitivity and the
out-of-sample error is established which allows to calculate the latter under
operational conditions. A minimum out-of-sample error is proposed as a
criterion to set an appropriate sensitivity and to settle the discussed
trade-off. Two approaches to data assimilation are considered, namely
variational data assimilation and Newtonian nudging, aka synchronisation.
Numerical examples demonstrate the feasibility of the approach.Comment: submitted to Quarterly Journal of the Royal Meteorological Societ
- …
