73 research outputs found
Spatially Resolved Operando Synchrotron-Based X-Ray Diffraction Measurements of Ni-Rich Cathodes for Li-Ion Batteries
Understanding the performance of commercially relevant cathode materials for lithium-ion (Li-ion) batteries is vital to realize the potential of high-capacity materials for automotive applications. Of particular interest is the spatial variation of crystallographic behavior across (what can be) highly inhomogeneous electrodes. In this work, a high-resolution X-ray diffraction technique was used to obtain operando transmission measurements of Li-ion pouch cells to measure the spatial variances in the cell during electrochemical cycling. Through spatially resolved investigations of the crystallographic structures, the distribution of states of charge has been elucidated. A larger portion of the charging is accounted for by the central parts, with the edges and corners delithiating to a lesser extent for a given average electrode voltage. The cells were cycled to different upper cutoff voltages (4.2 and 4.3 V vs. graphite) and C-rates (0.5, 1, and 3C) to study the effect on the structure of the NMC811 cathode. By combining this rapid data collection method with a detailed Rietveld refinement of degraded NMC811, the spatial dependence of the degradation caused by long-term cycling (900 cycles) has also been shown. The variance shown in the pristine measurements is exaggerated in the aged cells with the edges and corners offering an even lower percentage of the charge. Measurements collected at the very edge of the cell have also highlighted the importance of electrode alignment, with a misalignment of less than 0.5 mm leading to significantly reduced electrochemical activity in that area.</jats:p
Cigarette Smoke Upregulates Rat Coronary Artery Endothelin Receptors In Vivo
Background: Cigarette smoking is a strong cardiovascular risk factor and endothelin (ET) receptors are related to coronary artery diseases. The present study established an in vivo secondhand smoke (SHS) exposure model and investigated the hypothesis that cigarette smoke induces ET receptor upregulation in rat coronary arteries and its possible underlying mechanisms. Methodology/Principal Findings: Rats were exposed to SHS for 200 min daily for 8 weeks. The coronary arteries were isolated and examined. The vasoconstriction was studied by a sensitive myograph. The expression of mRNA and protein for receptors was examined by real-time PCR, Western blot and immunofluorescence. Compared to fresh air exposure, SHS increased contractile responses mediated by endothelin type A (ETA) and type B (ETB) receptors in coronary arteries. In parallel, the expression of mRNA and protein for ETA and ETB receptors of smoke exposed rats were higher than that of animals exposed to fresh air, suggesting that SHS upregulates ET A and ET B receptors in coronary arteries in vivo. Immunofluorescence staining showed that the enhanced receptor expression was localized to the smooth muscle cells of coronary arteries. The protein levels of phosphorylated (p)-Raf-1 and p-ERK1/2 in smoke exposed rats were significantly higher than in control rats, demonstrating that SHS induces the activation of the Raf/ERK/MAPK pathway. Treatment with Raf-1 inhibitor GW5074 suppressed SHS-induced enhanced contraction mediated by ET A receptors, and inhibited th
Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury
Anisotropic nanomaterials: structure, growth, assembly, and functions
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation
Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity
Functional electrical stimulation (FES) for treatment of head injury sequelae in children
Structure and proton conductivity of 12-tungstophosphoric acid doped silica
Sol-gel syntheses offer a wide range of possibilities for introduction of materials with specific properties (electronic, optic and ion-conductive, etc.) into optically clear matrices. Preparation of silica gel bulk, containing 12-tungstophosphoric acid (WPA) in mesopores, as well as its structural and conduction characteristics are reported. Characteristics of the obtained doped gels depend on the gel preparation, gelation process and the WPA content. According to the obtained results, especially for the high conductivity (sigma similar to 0.1 S/cm), WPA doped silica gel is a promising material for solid electrolytes.VIII International Conference on Solid State Protonic Conductors, Aug 18-23, 1996, Gol, Norwa
- …
