5,624 research outputs found
Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes
The need for a consistent quantum evolution for black holes has led to
proposals that their semiclassical description is modified not just near the
singularity, but at horizon or larger scales. If such modifications extend
beyond the horizon, they influence regions accessible to distant observeration.
Natural candidates for these modifications behave like metric fluctuations,
with characteristic length and time scales set by the horizon radius. We
investigate the possibility of using the Event Horizon Telescope to observe
these effects, if they have a strength sufficient to make quantum evolution
consistent with unitarity. We find that such quantum fluctuations can introduce
a strong time dependence for the shape and size of the shadow that a black hole
casts on its surrounding emission. For the black hole in the center of the
Milky Way, detecting the rapid time variability of its shadow will require
non-imaging timing techniques. However, for the much larger black hole in the
center of the M87 galaxy, a variable black-hole shadow, if present with these
parameters, would be readily observable in the individual snapshots that will
be obtained by the Event Horizon Telescope.Comment: To appear in Phys. Rev. D. For animations, see
http://xtreme.as.arizona.edu/~dpsaltis/?page_id=275
A multiscale model for conceptual design and simulation of a carbothermic reduction process for aluminium production
Silicon Micromachined Packages for RF MEMS Switches
MEMS technology has major applica-tions in developing smaller, faster and less energy consuming devices provided that reliability of pack-aging/ interconnect technology is sufficiently addressed. This paper presents a low cost, on-wafer, silicon mi-cromachined packaging scheme for RF MEMS switches having excellent electrical performance in K-band. In particular, the package demonstrates an insertion loss of 0.1dB and a return loss of 32dB at 20 GHz. The package is fabricated in parallel with the MEMS switch on the same wafer and therefore requires no lossy solder bumps or bond wires to achieve signal propagation
The Stability of Magnetized Rotating Plasmas with Superthermal Fields
During the last decade it has become evident that the magnetorotational
instability is at the heart of the enhanced angular momentum transport in
weakly magnetized accretion disks around neutron stars and black holes. In this
paper, we investigate the local linear stability of differentially rotating,
magnetized flows and the evolution of the magnetorotational instability beyond
the weak-field limit. We show that, when superthermal toroidal fields are
considered, the effects of both compressibility and magnetic tension forces,
which are related to the curvature of toroidal field lines, should be taken
fully into account. We demonstrate that the presence of a strong toroidal
component in the magnetic field plays a non-trivial role. When strong fields
are considered, the strength of the toroidal magnetic field not only modifies
the growth rates of the unstable modes but also determines which modes are
subject to instabilities. We find that, for rotating configurations with
Keplerian laws, the magnetorotational instability is stabilized at low
wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the
sound speed and the rotational speed. We discuss the significance of our
findings for the stability of cold, magnetically dominated, rotating fluids and
argue that, for these systems, the curvature of toroidal field lines cannot be
neglected even when short wavelength perturbations are considered. We also
comment on the implications of our results for the validity of shearing box
simulations in which superthermal toroidal fields are generated.Comment: 24 pages, 12 figures. Accepted for publication in ApJ. Sections 2 and
5 substantially expanded, added Appendix A and 3 figures with respect to
previous version. Animations are available at
http://www.physics.arizona.edu/~mpessah/research
A basis for solid modeling of gear teeth with application in design and manufacture
A new approach to modeling gear tooth surfaces is discussed. A computer graphics solid modeling procedure is used to simulate the tooth fabrication process. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel, and hypoid gear teeth. Applications in design and manufacturing are discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element bearings are proposed
Development of a multimedia tutorial to educate how to assess the critical view of safety in laparoscopic cholecystectomy using expert review and crowd-sourcing
We sought to determine the feasibility of developing a multimedia educational tutorial to teach learners to assess the critical view of safety using input from expert surgeons, non-surgeons and crowd-sourcing. We intended to develop a tutorial that would teach learners how to identify the basic anatomy and physiology of the gallbladder, identify the components of the critical view of safety criteria, and understand its significance for performing a safe gallbladder removal. Using rounds of assessment with experts, laypersons and crowd-workers we developed an educational video with improving comprehension after each round of revision. We demonstrate that the development of a multimedia educational tool to educate learners of various backgrounds is feasible using an iterative review process that incorporates the input of experts and crowd sourcing. When planning the development of an educational tutorial, a step-wise approach as described herein should be considered
Sonic-Point Model of Kilohertz Quasi-Periodic Brightness Oscillations in Low-Mass X-ray Binaries
Strong, coherent, quasi-periodic brightness oscillations (QPOs) with
frequencies ranging from about 300 Hz to 1200 Hz have been discovered with the
Rossi X-ray Timing Explorer in the X-ray emission from some fifteen neutron
stars in low-mass binary systems. Two simultaneous kilohertz QPOs differing in
frequency by 250 to 350 Hertz have been detected in twelve of the fifteen
sources. Here we propose a model for these QPOs. In this model the X-ray source
is a neutron star with a surface magnetic field of 10^7 to 10^10 G and a spin
frequency of a few hundred Hertz, accreting gas via a Keplerian disk. The
frequency of the higher-frequency QPO in a kilohertz QPO pair is the Keplerian
frequency at a radius near the sonic point at the inner edge of the Keplerian
flow whereas the frequency of the lower-frequency QPO is approximately the
difference between the Keplerian frequency at a radius near the sonic point and
the stellar spin frequency. This model explains naturally many properties of
the kilohertz QPOs, including their frequencies, amplitudes, and coherence. We
show that if the frequency of the higher-frequency QPO in a pair is an orbital
frequency, as in the sonic-point model, the frequencies of these QPOs place
interesting upper bounds on the masses and radii of the neutron stars in the
kilohertz QPO sources and provide new constraints on the equation of state of
matter at high densities. Further observations of these QPOs may provide
compelling evidence for the existence of a marginally stable orbit, confirming
a key prediction of general relativity in the strong-field regime.Comment: 67 pages, including 15 figures and 5 tables; uses aas2pp4; final
version to appear in the Astrophysical Journal on 1 December 199
Interplay of phase boundary anisotropy and electro-autocatalytic surface reactions on the lithium intercalation dynamics in LiFePO platelet-like nanoparticles
Experiments on single crystal LiFePO (LFP) nanoparticles indicate
rich nonequilibrium phase behavior, such as suppression of phase separation at
high lithiation rates, striped patterns of coherent phase boundaries,
nucleation by binarysolid surface wetting and intercalation waves. These
observations have been successfully predicted (prior to the experiments) by 1D
depth-averaged phase-field models, which neglect any subsurface phase
separation. In this paper, using an electro-chemo-mechanical phase-field model,
we investigate the coherent non-equilibrium subsurface phase morphologies that
develop in the - plane of platelet-like single-crystal platelet-like
LiFePO nanoparticles. Finite element simulations are performed for 2D
plane-stress conditions in the - plane, and validated by 3D simulations,
showing similar results. We show that the anisotropy of the interfacial tension
tensor, coupled with electroautocatalytic surface intercalation reactions,
plays a crucial role in determining the subsurface phase morphology. With
isotropic interfacial tension, subsurface phase separation is observed,
independent of the reaction kinetics, but for strong anisotropy, phase
separation is controlled by surface reactions, as assumed in 1D models.
Moreover, the driven intercalation reaction suppresses phase separation during
lithiation, while enhancing it during delithiation, by electro-autocatalysis,
in quantitative agreement with {\it in operando} imaging experiments in
single-crystalline nanoparticles, given measured reaction rate constants
Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay
Objectives: Lead antituberculosis (anti-TB) molecules with novel mechanisms of action are urgently required to fuel the anti-TB drug discovery pipeline. The aim of this study was to validate the use of the high-throughput spot culture growth inhibition (HT-SPOTi) assay for screening libraries of compounds against Mycobacterium tuberculosis and to study the inhibitory effect of ibuprofen (IBP) and the other 2-arylpropanoic acids on the growth inhibition of M tuberculosis and other mycobacterial species.
Methods: The HT-SPOTi method was validated not only with known drugs but also with a library of 47 confirmed anti-TB active compounds published in the ChEMBL database. Three over-the-counter non-steroidal anti-inflammatory drugs were also included in the screening. The 2-arylpropanoic acids, including IBP, were comprehensively evaluated against phenotypically and physiologically different strains of mycobacteria, and their cytotoxicity was determined against murine RAW264.7 macrophages. Furthermore, a comparative bioinformatic analysis was employed to propose a potential mycobacterial target.
Results: IBP showed antitubercular properties while carprofen was the most potent among the 2-arylpropanoic class. A 3,5-dinitro-IBP derivative was found to be more potent than IBP but equally selective. Other synthetic derivatives of IBP were less active, and the free carboxylic acid of IBP seems to be essential for its anti-TB activity. IBP, carprofen and the 3,5-dinitro-IBP derivative exhibited activity against multidrug-resistant isolates and stationary phase bacilli. On the basis of the human targets of the 2-arylpropanoic analgesics, the protein initiation factor infB (Rv2839c) of M tuberculosis was proposed as a potential molecular target.
Conclusions: The HT-SPOTi method can be employed reliably and reproducibly to screen the antimicrobial potency of different compounds. IBP demonstrated specific antitubercular activity, while carprofen was the most selective agent among the 2-arylpropanoic class. Activity against stationary phase bacilli and multidrug-resistant isolates permits us to speculate a novel mechanism of antimycobacterial action. Further medicinal chemistry and target elucidation studies could potentially lead to new therapies against TB
- …
