20 research outputs found

    Forecasting Mortality Rate Using a Neural Network with Fuzzy Inference System

    Get PDF
    Various methods have been developed to improve mortality forecasts. The authors proposed a neuro-fuzzy model to forecast the mortality. The forecasting of mortality is curried out by an ANFIS model which uses a first order Sugeno-type FIS. The model predicts the yearly mortality in a one step ahead prediction scheme. The method of trial and error was used in order to decide the type of membership function that describe better the model and provides the minimum error. The output of the models is the next year�s mortality. The results were presented and compared based on three different kinds of errors: RMSE, MAE, and MAPE. The ANFIS model gives good results for the case of two gbell membership functions and 500 epochs. Finally, the ANFIS model gives better results than the AR and ARMA model.ANFIS, Forecasting, Mortality, Modeling.

    Celiac Crisis in an Adult Patient: Case Report and Review of the Literature

    No full text
    We report a case of celiac crisis in a previously healthy 51-year-old female presenting with a month’s history of diarrhea, cachexia and an abnormal metabolic panel.The patient’s diarrhea resolved after initiation of a gluten free diet and she gained 4 kilograms during hospitalization. Celiac crisis is a very rare presentation of celiac disease in adults but nonetheless should be considered in patients with marked metabolic derangements in the setting of osmotic diarrhea.</jats:p

    Programmed cell death of follicular epithelium during the late developmental stages of oogenesis in the fruit flies Bactrocera oleae and Ceratitis capitata (Diptera, Tephritidae) is mediated by autophagy

    No full text
    In the present study, we describe the features of programmed cell death of ovarian follicle cells, occurring during the late developmental stages of oogenesis in the olive fruit fly, Bactrocera oleae and the medfly, Ceratitis capitata. During stage 14, the follicle cells contain autophagic vacuoles, and they do not exhibit caspase activity in all parts of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high- but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. These data argue for the presence of an autophagy-mediated cell death program in the ovarian follicle cell layer in both species. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. We strongly believe that during the termination of the above Dipteran oogenesis, an efficient mechanism of absorption of the degenerated follicle cells is selectively activated, in order to prevent the blockage of the ovarioles and thus robustly support the physiological completion of the ovulation process

    Chromatin condensation of ovarian nurse and follicle cells is regulated independently from DNA fragmentation during Drosophila late oogenesis

    No full text
    Programmed cell death constitutes a common fundamental incident occurring during oogenesis in a variety of different organisms. In Drosophila melanogaster, it plays a significant role in the maturation process of the egg chamber. In the present study, we have used an in vitro development system for studying the effects of inducers and inhibitors of programmed cell death during the late stages of oogenesis. Treatment of the developing egg chambers with two widely used inducers of cell death, etoposide and staurosporine, blocks further development and induces chromatin condensation but not DNA fragmentation in nurse and follicle cells, as revealed by propidium iodide staining and terminal transferase-mediated dUTP nick-end labeling assay. Moreover, incubation of the developing egg chambers with the caspase-3 inhibitor Z-DEVD-FMK significantly delays development, prevents DNA fragmentation, but does not affect chromatin condensation. The above results demonstrate, for the first time, that chromatin condensation in Drosophila ovarian nurse and follicle cells is a caspase-3-like independent process and is regulated independently from DNA fragmentation

    Autophagy is required for the degeneration of the ovarian follicular epithelium in higher diptera

    No full text
    Autophagy is a major pathway for the degradation of long-lived proteins and cytoplasmic organelles and an essential part of programmed cell death, as well. Our findings indicate that programmed cell death of the ovarian follicle cells in the higher Diptera species Bactrocera oleae and Ceratitis capitata manifests features of autophagic cell death. The follicle cells during the developmental stage 14 contain autophagic vacuoles and they do not exhibit caspase activity in any area of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high—but not low—molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. The similarity of the cell death process among B. oleae, C. capitata and Drosophila melanogaster species strongly suggests that autophagy-mediated cell death is conserved in higher Diptera species

    Follicular atresia during Dacus oleae oogenesis

    No full text
    Programmed cell death, constitutes a common fundamental incident that occurs during oogenesis in a variety of different animals. It plays a significant role in the maturation process of the female gamete and also in the removal of abnormal and superfluous cells at certain checkpoints of development. In the present study, we demonstrate the existence of follicular atresia during mid-oogenesis in the olive fruit fly Dacus oleae (Tephritidae). The number of atretic follicles increases following the age of the fly, suggesting for the presence of an age-susceptible process. The atretic follicles contain nurse cells that exhibit chromatin condensation, DNA fragmentation and actin cytoskeleton alterations, as revealed by propidium iodide staining, TUNEL labeling and phalloidin-FITC staining. Conventional light and electron microscopy disclose that the nurse cell remnants are phagocytosed by the adjacent follicle cells. The follicular epithelium also eliminates the oocyte through phagocytosis, resulting to an egg chamber with no compartmentalized organization. The data presented herein are very similar compared to previous reported results in other Diptera species, strongly suggesting the occurrence of a phylogenetically conserved mechanism of follicular atresia. All these observations also support the notion that mid-oogenesis in D. oleae may be the critical regulation point at which superfluous and defective egg chambers are selectively eliminated before they reach maturity

    Dynamics of apoptosis in the ovarian follicle cells during the late stages of Drosophila oogenesis

    No full text
    In the present study, we demonstrate the apoptotic events of the ovarian follicle cells during the late stages of oogenesis in Drosophila melanogaster. Follicle cell morphology appears normal from stage 10 up to stage 14, exhibiting a euchromatic nucleus and a well-organized cytoplasm. First signs of apoptosis appear at the anterior pole of the egg chamber at stage 14A. They are characterized by loss of microvilli at the apical cell membrane, alterations in nuclear morphology, such as chromatin condensation and convolution of the nuclear membrane, and also by condensation and vacuolization of the cytoplasm. During the following stage 14B, the follicle cell nuclei contain fragmented DNA as is demonstrated by acridine orange staining and TUNEL (TdT-mediated dUTP nick end-labeling) assay. Finally, the apoptotic follicle cells seem to detach from the eggshell when the mature egg chamber exits the ovariole. The detached follicle cells exhibit condensed nuclear chromatin, a disorganized cytoplasm with crowded organelles and are surrounded by epithelial cells. The above results seem to be associated with the abundant phagocytosis that we observed at the entry of the lateral oviducts, where the epithelial cells contain apoptotic cell bodies. Additionally, we tested the effect of etoposide treatment in the follicular epithelium and found that it induces apoptosis in a stage- and site-specific manner. These observations suggest a possible method of absorption of the apoptotic follicle cells that prevents the blockage of the ovarioles and helps the regular production of mature eggs

    Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis

    No full text
    Programmed cell death consists of two major types, apoptotic and autophagic, both of which are mainly defined by morphological criteria. Our findings indicate that both types of programmed cell death occur in the ovarian nurse cells during middle and late oogenesis of Drosophila virilis. During mid-oogenesis, the spontaneously degenerated egg chambers exhibit typical characteristics of apoptotic cell death. Their nurse cells contain condensed chromatin and fragmented DNA, whereas active caspase assays and immunostaining procedures demonstrate the presence of highly activated caspases. Distinct features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining and ultrastructural examination performed by transmission electron microscopy. Additionally, atretic egg chambers exhibit an accumulation of lysosomal proteases. At the late stages of D. virilis oogenesis, apoptosis and autophagy coexist, manifesting cell death features that are similar to the ones described above, being also escorted by the involvement of an altered cytochrome c conformational display. We propose that apoptosis and autophagy operate synergistically during D. virilis oogenesis for a more efficient elimination of the degenerated nurse cells

    Mechanisms of programmed cell death during oogenesis in Drosophila virilis

    No full text
    We describe the features of programmed cell death occurring in the egg chambers of Drosophila virilis during mid-oogenesis and late oogenesis. During mid-oogenesis, the spontaneously degenerating egg chambers exhibit typical characteristics of apoptotic cell death. As revealed by propidium iodide, rhodamine-conjugated phalloidin staining, and the TUNEL assay, respectively, the nurse cells contain condensed chromatin, altered actin cytoskeleton, and fragmented DNA. In vitro caspase activity assays and immunostaining procedures demonstrate that the atretic egg chambers possess high levels of caspase activity. Features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining, together with an ultrastructural examination by transmission electron microscopy. During the late stages of oogenesis in D. virilis, once again, the two mechanisms, viz., nurse cell cluster apoptosis and autophagy, operate together, manifesting features of cell death similar to those detailed above. Moreover, an altered form of cytochrome c seems to be released from the mitochondria in the nurse cells proximal to the oocyte. We propose that apoptosis and autophagy function synergistically during oogenesis in D. virilis in order to achieve a more efficient elimination of the degenerated nurse cells and abnormal egg chambers

    Morphological irregularities and features of resistance to apoptosis in thedcp-1/pita double mutated egg chambers during Drosophila oogenesis

    No full text
    In the present study, we demonstrate the most novel characteristic morphological features of Drosophila egg chambers lacking both dcp-1 and pita functions in the germline cells. Dcp-1 is an effector caspase and it has been previously shown to play an important role during Drosophila oogenesis [McCall and Steller, 1998 : Science 279 : 230–234; Laundrie et al., 2003 : Genetics 165 : 1881–1888; Peterson et al., 2003 : Dev Biol 260 : 113–123]. The completion of sequencing and annotation of the Drosophila genome has revealed that the dcp-1 gene is nested within an intron of another distinct gene, called pita, a member of the C2H2 zinc finger protein family that regulates transcriptional initiation. The dcp-1−/−/pita−/− nurse cells exhibit euchromatic nuclei (delay of apoptosis) during the late stages of oogenesis, as revealed by conventional light and electron microscopy. The phalloidin-FITC staining discloses significant defects in actin cytoskeleton arrangement. The actin bundles fail to organize properly and the distribution of actin filaments in the ring canals is changed compared to the wild type. The oocyte and the chorion structures have been also modified. The oocyte nucleus is out of position and the chorion appears to contain irregular foldings, while the respiratory filaments obtain an altered morphology. The dcp-1−/−/pita−/− egg chambers do not exhibit the rare events of spontaneously induced apoptosis, observed for the wild type flies, during mid-oogenesis. Interestingly, the mutated egg chambers are protected by staurosporine-induced apoptosis in a percentage of 40%, strongly suggesting the essential role of dcp-1 and/or pita during mid-oogenesis. Cell Motil. Cytoskeleton 60:14–23, 2005. © 2004 Wiley-Liss, Inc
    corecore