10 research outputs found
Polysaccharides in Solution: Experimental and Computational Studies
Carbohydrates can be found in many natural sources, and they play a central role in various biological processes. These versatile biopolymers are difficult to dissolve in solutions, and therefore converting them into functional forms is a significant challenge, whereby both experimental and computational studies become critical. This chapter discusses commonly used experimental approaches to increase solubility of carbohydrates in solutions and computational studies to rationalize their conformations and solvation effects. Advances of experimental and computational methods for the study of carbohydrates will guide the design approaches to use carbohydrates in industrially and academically relevant applications
Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights
Density functional theory (DFT) was used to explore the antioxidant properties of some naturally occurring dietary vitamins, and the reaction enthalpies related to various mechanisms of primary antioxidant action, i.e., hydrogen atom transfer, single electron transfer−proton transfer, and sequential proton loss−electron transfer were discussed in detail. B3LYP, M05-2X, and M06-2X functionals were utilized in this work. For aqueous phase studies, the integral equation formalism polarized continuum model (IEF−PCM) was employed. From the outcomes, hydrogen atom transfer (HAT) was the most probable mechanism for the antioxidant action of this class of compounds. Comparison of found results with experimental data (available in literature), vitamin C possesses the lowest enthalpy values for both proton affinity (PA) and bond dissociation energy (BDE)in the aqueous phase, suggesting it as the most promising candidate as an antioxidant. Accordingly, these computational insights encourage the design of structurally novel, simple vitamins which will be more economical and beneficial in the pharmaceutical industry
Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu
Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights
Density functional theory (DFT) was used to explore the antioxidant properties of some naturally occurring dietary vitamins, and the reaction enthalpies related to various mechanisms of primary antioxidant action, i.e., hydrogen atom transfer, single electron transfer–proton transfer, and sequential proton loss–electron transfer were discussed in detail. B3LYP, M05-2X, and M06-2X functionals were utilized in this work. For aqueous phase studies, the integral equation formalism polarized continuum model (IEF–PCM) was employed. From the outcomes, hydrogen atom transfer (HAT) was the most probable mechanism for the antioxidant action of this class of compounds. Comparison of found results with experimental data (available in literature), vitamin C possesses the lowest enthalpy values for both proton affinity (PA) and bond dissociation energy (BDE)in the aqueous phase, suggesting it as the most promising candidate as an antioxidant. Accordingly, these computational insights encourage the design of structurally novel, simple vitamins which will be more economical and beneficial in the pharmaceutical industry.</jats:p
Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu.</jats:p
Investigation and Comparison of Antioxidant Potential of Catechins Present in Green Tea: DFT Study
DFT calculations were applied to compare the antioxidant potential of four major catechins present in green tea. The thermodynamic parameters related to three key mechanisms of primary antioxidant action were investigated in detail. Molecular orbital energies, absolute hardness, electronegativity, and electrophilicity index, which contributed to the radical scavenging were also investigated. The radical scavenging potential of each hydroxyl group of these polyphenolic antioxidants were investigated independently.</jats:p
Photochemical Generation and Reversible Cycloaromatization of a Nine-Membered Ring Cyclic Enediyne
Irradiation of the nine-membered ring enediyne precursor, which has one of its triple bonds masked as cyclopropenone, efficiently (Φ = 0.34) generates the reactive 4,5-benzocyclonona-2,6-diynol. The latter rapidly equilibrates with the corresponding 1,4-didehydronaphthalene diradical and then undergoes rate-limiting hydrogen abstraction to produce the ultimate product of the Bergman cyclization, benz[f]indanol
Antioxidant Potential of Novel Designed Phenolic Derivatives: Computational Insights
Density functional theory calculations were applied for designed phenolic antioxidant derivatives. The reaction enthalpies related to various mechanisms of primary antioxidant action were deliberated in detail. How antioxidant activity of designed phenolic compounds has been perturbed by electron donor and withdrawing substituents present at ortho, meta and para positions, allylic conjugation and the dimerization effect were computed.</jats:p
Photochemical Triggering of the Bergman and Myers - Saito Cyclizations
Two strategies for the photochemical generation of reactive enediyne compounds and their subsequent cycloaromatization to p-benzyne or α,3-didehydrotoluene derivatives are discussed in this account. The first method employs a photo-Wolff reaction of stable 11- or 12-membered ring precursor enediynes containing the 2-diazo-1,3-diketone moiety. Irradiation of these compounds results in ring contraction and the formation of two isomeric enediynes possessing an enolized β-ketoester fragment. One of the isomers undergoes the conventional Bergman cyclization, whereas the other isomerizes into the enyne-allene tautomer, which rapidly cyclizes via a Myers–Saito mechanism. The second strategy consists of replacing the triple bond in a cyclic enediyne or enyne-allene structure with a cyclopropenone group, rendering them thermally stable. Photolysis of cyclopropenones results in efficient decarbonylation and the regeneration of a triple bond, restoring the enediyne π-system. The generation of reactive enediynes by non-resonant two-photon excitation using wavelengths within a ‘phototherapeutic window’ was also demonstrated. Photogenerated enediynes show significant nuclease activity, efficiently inducing single-strand dDNA cleavage.
</jats:p
