7,386 research outputs found
Charge superconductivity from pair density wave order in certain high temperature superconductors
A number of spectacular experimental anomalies\cite{li-2007,fujita-2005} have
recently been discovered in certain cuprates, notably {\LBCO} and {\LNSCO},
which exhibit unidirectional spin and charge order (known as ``stripe order'').
We have recently proposed to interpret these observations as evidence for a
novel ``striped superconducting'' state, in which the superconducting order
parameter is modulated in space, such that its average is precisely zero. Here,
we show that thermal melting of the striped superconducting state can lead to a
number of unusual phases, of which the most novel is a charge
superconducting state, with a corresponding fractional flux quantum .
These are never-before observed states of matter, and ones, moreover, that
cannot arise from the conventional Bardeen-Cooper-Schrieffer (BCS) mechanism.
Thus, direct confirmation of their existence, even in a small subset of the
cuprates, could have much broader implications for our understanding of high
temperature superconductivity. We propose experiments to observe fractional
flux quantization, which thereby could confirm the existence of these states.Comment: 5 pages, 2 figures; new version in Nature Physics format with a
discussion of the effective Josephson coupling J2 and minor changes. Mildly
edited abstract. v3: corrected versio
The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaff ected by exposure to 50 Hz magnetic fi elds
Following in utero exposure to low dose radiation
(10 – 200 mGy), we recently observed a linear induction of DNA
double-strand breaks (DSB) and activation of apoptosis in the
embryonic neuronal stem/progenitor cell compartment. No
signifi cant induction of DSB or apoptosis was observed following
exposure to magnetic fi elds (MF). In the present study, we
exploited this in vivo system to examine whether exposure to MF
before and after exposure to 100 mGy X-rays impacts upon DSB
repair rates.
Materials and methods : 53BP1 foci were quantifi ed following
combined exposure to radiation and MF in the embryonic neuronal
stem/progenitor cell compartment. Embryos were exposed
in utero to 50 Hz MF at 300 m T for 3 h before and up to 9 h after
exposure to 100 mGy X-rays. Controls included embryos exposed
to MF or X-rays alone plus sham exposures.
Results : Exposure to MF before and after 100 mGy X-rays did not
impact upon the rate of DSB repair in the embryonic neuronal
stem cell compartment compared to repair rates following radiation
exposure alone.
Conclusions : We conclude that in this sensitive system MF do not
exert any signifi cant level of DNA damage and do not impede
the repair of X-ray induced damage
Large sulfur isotope fractionations in Martian sediments at Gale crater
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods
Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus
Coherent light scattering presents complex spatial patterns that depend on morphological and molecular features of biological cells. We present a numerical approach to establish realistic optical cell models for generating virtual cells and accurate simulation of diffraction images that are comparable to measured data of prostate cells. With a contourlet transform algorithm, it has been shown that the simulated images and extracted parameters can be used to distinguish virtual cells of different nuclear volumes and refractive indices against the orientation variation. These results demonstrate significance of the new approach for development of rapid cell assay methods through diffraction imaging.ECU Open Access Publishing Support Fun
In vitro production of bovine embryos derived from individual donors in the Corral® dish
Background: Since the identity of the embryo is of outmost importance during commercial in vitro embryo production, bovine oocytes and embryos have to be cultured strictly per donor. Due to the rather low yield of oocytes collected after ovum pick-up (OPU) per individual cow, oocyte maturation and embryo culture take place in small groups, which is often associated with inferior embryo development. The objective of this study was to improve embryonic development in small donor groups by using the Corral (R) dish. This commercial dish is designed for human embryo production. It contains two central wells that are divided into quadrants by a semi-permeable wall. In human embryo culture, one embryo is placed per quadrant, allowing individual follow-up while embryos are exposed to a common medium. In our study, small groups of oocytes and subsequently embryos of different bovine donors were placed in the Corral (R) dish, each donor group in a separate quadrant.
Results: In two experiments, the Corral (R) dish was evaluated during in vitro maturation (IVM) and/or in vitro culture (IVC) by grouping oocytes and embryos of individual bovine donors per quadrant. At day 7, a significantly higher blastocyst rate was noted in the Corral (R) dish used during IVM and IVC than when only used during IVM (12.9% +/- 2.10 versus 22.8% +/- 2.67) (P < 0.05). However, no significant differences in blastocyst yield were observed anymore between treatment groups at day 8 post insemination.
Conclusions: In the present study, the Corral (R) dish was used for in vitro embryo production (IVP) in cattle; allowing to allocate oocytes and/or embryos per donor. As fresh embryo transfers on day 7 have higher pregnancy outcomes, the Corral (R) dish offers an added value for commercial OPU/IVP, since a higher blastocyst development at day 7 is obtained when the Corral (R) dish is used during IVM and IVC
Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides
The in-plane anisotropy of the electrical resistivity across the coupled
orthorhombic and magnetic transitions of the iron pnictides has been
extensively studied in the parent and electron-doped compounds. All these
studies universally show that the resistivity across the long
orthorhombic axis - along which the spins couple antiferromagnetically
below the magnetic transition temperature - is smaller than the resistivity
of the short orthorhombic axis , i. e. .
Here we report that in the hole-doped compounds
BaKFeAs, as the doping level increases, the
resistivity anisotropy initially becomes vanishingly small, and eventually
changes sign for sufficiently large doping, i. e. . This
observation is in agreement with a recent theoretical prediction that considers
the anisotropic scattering of electrons by spin-fluctuations in the
orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new
explanation of the experimental results first reported her
Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors
The development of highly-sensitive and miniaturized sensors that capable of
real-time analytes detection is highly desirable. Nowadays, toxic or colorless
gas detection, air pollution monitoring, harmful chemical, pressure, strain,
humidity, and temperature sensors based on photonic crystal fiber (PCF) are
increasing rapidly due to its compact structure, fast response and efficient
light controlling capabilities. The propagating light through the PCF can be
controlled by varying the structural parameters and core-cladding materials, as
a result, evanescent field can be enhanced significantly which is the main
component of the PCF based gas/chemical sensors. The aim of this chapter is to
(1) describe the principle operation of PCF based gas/ chemical sensors, (2)
discuss the important PCF properties for optical sensors, (3) extensively
discuss the different types of microstructured optical fiber based gas/
chemical sensors, (4) study the effects of different core-cladding shapes, and
fiber background materials on sensing performance, and (5) highlight the main
challenges of PCF based gas/ chemical sensors and possible solutions
Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples
Background: Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. Methods: The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. Results: The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3%, 58.6%, 40.5% and 10.8% by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97% for both methods. Conclusion: This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the field surveillance of domestic dogs, particularly of asymptomatic canines, in ZVL-endemic areas in western China
Genetic Covariance Structure of Reading, Intelligence and Memory in Children
This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two
On the Relationship Between the Pseudo- and Superconducting Gaps: Effects of Residual Pairing Correlations Below Tc
The existence of a normal state spectral gap in underdoped cuprates raises
important questions about the associated superconducting phase. For example,
how does this pseudogap evolve into its below Tc counterpart? In this paper we
characterize this unusual superconductor by investigating the nature of the
``residual'' pseudogap below Tc and, find that it leads to an important
distinction between the superconducting excitation gap and order parameter. Our
approach is based on a conserving diagrammatic BCS Bose-Einstein crossover
theory which yields the precise BCS result in weak coupling at any T<Tc and
reproduces Leggett's results in the T=0 limit. We explore the resulting
experimental implications.Comment: REVTeX, 4 pages, 1 EPS figure (included
- …
