32,655 research outputs found
Bipartite graph partitioning and data clustering
Many data types arising from data mining applications can be modeled as
bipartite graphs, examples include terms and documents in a text corpus,
customers and purchasing items in market basket analysis and reviewers and
movies in a movie recommender system. In this paper, we propose a new data
clustering method based on partitioning the underlying bipartite graph. The
partition is constructed by minimizing a normalized sum of edge weights between
unmatched pairs of vertices of the bipartite graph. We show that an approximate
solution to the minimization problem can be obtained by computing a partial
singular value decomposition (SVD) of the associated edge weight matrix of the
bipartite graph. We point out the connection of our clustering algorithm to
correspondence analysis used in multivariate analysis. We also briefly discuss
the issue of assigning data objects to multiple clusters. In the experimental
results, we apply our clustering algorithm to the problem of document
clustering to illustrate its effectiveness and efficiency.Comment: Proceedings of ACM CIKM 2001, the Tenth International Conference on
Information and Knowledge Management, 200
Anomalous Tail Effect on Resistivity Transition and Weak-link Behavior of Iron Based Superconductor
Temperature dependent resistivity of the iron-based superconductor
NdFeAsO0.88F0.12 was measured under different applied fields and excitation
currents. Arrhenius plot shows an anomalous tail effect, which contains obvious
two resistivity dropping stages. The first is caused by the normal
superconducting transition, and the second is supposed to be related to the
weak-link between the grains. A model for the resistivity dropping related to
the weak-link behavior is proposed, which is based on the Josephson junctions
formed by the impurities in grain boundaries like FeAs, Sm2O3 and cracks
together with the adjacent grains. These Josephson junctions can be easily
broken by the applied fields and the excitations currents, leading to the
anomalous resistivity tail in many polycrystalline iron-based superconductors.
The calculated resistivity dropping agrees well with the experimental data,
which manifests the correctness of the explanation of the obtained anomalous
tail effect.Comment: 9 pages, 4 figure
Fire responses and resistance of concrete-filled steel tubular frame structures
This paper presents the results of dynamic responses and fire resistance of concretefilled
steel tubular (CFST) frame structures in fire conditions by using non-linear finite element
method. Both strength and stability criteria are considered in the collapse analysis. The frame
structures are constructed with circular CFST columns and steel beams of I-sections. In order to
validate the finite element solutions, the numerical results are compared with those from a fire
resistance test on CFST columns. The finite element model is then adopted to simulate the
behaviour of frame structures in fire. The structural responses of the frames, including critical
temperature and fire-resisting limit time, are obtained for the ISO-834 standard fire. Parametric
studies are carried out to show their influence on the load capacity of the frame structures in fire.
Suggestions and recommendations are presented for possible adoption in future construction and
design of these structures
Understanding the white-light flare on 2012 March 9 : Evidence of a two-step magnetic reconnection
We attempt to understand the white-light flare (WLF) that was observed on
2012 March 9 with a newly constructed multi-wavelength solar telescope called
the Optical and Near-infrared Solar Eruption Tracer (ONSET). We analyzed WLF
observations in radio, H-alpha, white-light, ultraviolet, and X-ray bands. We
also studied the magnetic configuration of the flare via the nonlinear
force-free field (NLFFF) extrapolation and the vector magnetic field observed
by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO). Continuum emission enhancement clearly appeared at the 3600
angstrom and 4250 angstrom bands, with peak contrasts of 25% and 12%,
respectively. The continuum emission enhancement closely coincided with the
impulsive increase in the hard X-ray emission and a microwave type III burst at
03:40 UT. We find that the WLF appeared at one end of either the sheared or
twisted field lines or both. There was also a long-lasting phase in the H-alpha
and soft X-ray bands after the white-light emission peak. In particular, a
second, yet stronger, peak appeared at 03:56 UT in the microwave band. This
event shows clear evidence that the white-light emission was caused by
energetic particles bombarding the lower solar atmosphere. A two-step magnetic
reconnection scenario is proposed to explain the entire process of flare
evolution, i.e., the first-step magnetic reconnection between the field lines
that are highly sheared or twisted or both, and the second-step one in the
current sheet, which is stretched by the erupting flux rope. The WLF is
supposed to be triggered in the first-step magnetic reconnection at a
relatively low altitude.Comment: 4 pages, 4 figures, published in A&A Lette
- …
