681 research outputs found
Fault-Tolerant Spanners: Better and Simpler
A natural requirement of many distributed structures is fault-tolerance:
after some failures, whatever remains from the structure should still be
effective for whatever remains from the network. In this paper we examine
spanners of general graphs that are tolerant to vertex failures, and
significantly improve their dependence on the number of faults , for all
stretch bounds.
For stretch we design a simple transformation that converts every
-spanner construction with at most edges into an -fault-tolerant
-spanner construction with at most edges.
Applying this to standard greedy spanner constructions gives -fault tolerant
-spanners with edges. The previous
construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends
similarly on but exponentially on (approximately like ).
For the case and unit-length edges, an -approximation
algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010],
where several spanner results are obtained using a common approach of rounding
a natural flow-based linear programming relaxation. Here we use a different
(stronger) LP relaxation and improve the approximation ratio to ,
which is, notably, independent of the number of faults . We further
strengthen this bound in terms of the maximum degree by using the \Lovasz Local
Lemma.
Finally, we show that most of our constructions are inherently local by
designing equivalent distributed algorithms in the LOCAL model of distributed
computation.Comment: 17 page
Brief Announcement: Massively Parallel Approximate Distance Sketches
Data structures that allow efficient distance estimation have been extensively studied both in centralized models and classical distributed models. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use is an MPC construction of the hopsets of Elkin and Neiman (2016). This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting
The Capacity of Smartphone Peer-To-Peer Networks
We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades.
The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput.
Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model
Lowest Degree k-Spanner: Approximation and Hardness
A k-spanner is a subgraph in which distances are approximately preserved, up to some given stretch factor k. We focus on the following problem: Given a graph and a value k, can we find a k-spanner that minimizes the maximum degree? While reasonably strong bounds are known for some spanner problems, they almost all involve minimizing the total number of edges. Switching the objective to the degree introduces significant new challenges, and currently the only known approximation bound is an O~(Delta^(3-2*sqrt(2)))-approximation for the special case when k = 2 [Chlamtac, Dinitz, Krauthgamer FOCS 2012] (where Delta is the maximum degree in the input graph). In this paper we give the first non-trivial algorithm and polynomial-factor hardness of approximation for the case of general k. Specifically, we give an LP-based O~(Delta^((1-1/k)^2) )-approximation and prove that it is hard to approximate the optimum to within Delta^Omega(1/k) when the graph is undirected, and to within Delta^Omega(1) when it is directed
Massively Parallel Approximate Distance Sketches
Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds.
Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of [Elkin and Neiman, 2016]. This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting
Optimal Vertex Fault Tolerant Spanners (for fixed stretch)
A -spanner of a graph is a sparse subgraph whose shortest path
distances match those of up to a multiplicative error . In this paper we
study spanners that are resistant to faults. A subgraph is an
vertex fault tolerant (VFT) -spanner if is a -spanner
of for any small set of vertices that might "fail." One
of the main questions in the area is: what is the minimum size of an fault
tolerant -spanner that holds for all node graphs (as a function of ,
and )? This question was first studied in the context of geometric
graphs [Levcopoulos et al. STOC '98, Czumaj and Zhao SoCG '03] and has more
recently been considered in general undirected graphs [Chechik et al. STOC '09,
Dinitz and Krauthgamer PODC '11].
In this paper, we settle the question of the optimal size of a VFT spanner,
in the setting where the stretch factor is fixed. Specifically, we prove
that every (undirected, possibly weighted) -node graph has a
-spanner resilient to vertex faults with edges, and this is fully optimal (unless the famous Erdos Girth
Conjecture is false). Our lower bound even generalizes to imply that no data
structure capable of approximating similarly can
beat the space usage of our spanner in the worst case. We also consider the
edge fault tolerant (EFT) model, defined analogously with edge failures rather
than vertex failures. We show that the same spanner upper bound applies in this
setting. Our data structure lower bound extends to the case (and hence we
close the EFT problem for -approximations), but it falls to for . We leave it as an open problem to
close this gap.Comment: To appear in SODA 201
- …
