80 research outputs found
Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry
To determine 3-year event rates in outpatients with vascular disease enrolled in the REduction of Atherothrombosis for Continued Health (REACH) Registry. Methods and results REACH enrolled 67 888 outpatients with atherothrombosis [ established coronary artery disease (CAD), cerebrovascutar disease, or peripheral arterial disease (PAD)], or with at least three atherothrombotic risk factors, from 44 countries . Among the 55 499 patients at baseline with symptomatic disease, 39 675 were eligible for 3-year follow-up, and 32 247 had data available (81% retention rate). Among the symptomatic patients at 3 years, 92% were taking an antithrombotic agent, 91% an anti hypertensive, and 76% were on Upid- lowering therapy. For myocardial infarction (Ml)/ stroke/vascutar death, 1 - and 3-year event rates for all patients were 4.2 and 11.0%, respectively. Event rates (MI/ stroke/vascutar death) were significantly higher for patients with symptomatic disease vs. those with risk factors only at 1 year (4.7 vs. 2.3%, P < 0.001) and at 3 years (12.0 vs. 6.0%, P < 0.001). One and 3-year rates of MI /stroke/vascular cleath/ rehospitatization were 14.4 and 28.4 %, respectively, for patients with symptomatic disease. Rehospitalization for a vascular event other than Mi/ stroke/ vascular death was common at 3 years (19.0% overall; 33.6% for PAD ; 23.0% for CAD). For patients with symptomatic vascular disease in one vascular bed vs. multiple vascular beds, 3-year event rates for MI/stroke/ vascular death/ rehospitalization were 25.5 vs. 40.5% (P < 0.001). Conclusion Despite contemporary therapy, outpatients with symptomatic atherothrombotic vascular disease experience high rates of recurrent vascular events and rehospitalizations
Radiotherapeutic alternatives for previously irradiated recurrent gliomas
Re-irradiation for recurrent gliomas has been discussed controversially in the past. This was mainly due to only marginal palliation while being associated with a high risk for side effects using conventional radiotherapy
Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling
Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity
Primitive Duplicate Hox Clusters in the European Eel's Genome
The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire
Cancer Genomics Identifies Regulatory Gene Networks Associated with the Transition from Dysplasia to Advanced Lung Adenocarcinomas Induced by c-Raf-1
Background: Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initialy dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. Methodology/Principal Findings: By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be upregulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionaly, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. Conclusions/Significance: This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity
Distinct mandibular premolar crown morphology in Homo naledi and its implications for the evolution of Homo species in southern Africa
Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 95), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well22 developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3>P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans
Intrinsic tectal low grade astrocytomas: is surgical removal an alternative treatment? Long-term outcome of eight cases
Effect of heating ramp rates on transient enhanced diffusion in ion-implanted silicon
\u3cp\u3eBoron marker-layer structures have been used to analyze the heating ramp-rate dependence of transient enhanced dopant diffusion (TED) during rapid thermal annealing of Si implantation damage. The study uses short anneals with heating ramp rates in the range 0.1-350°CVs, and peak temperatures in the range 900-1100°C. Increasing the ramp rate is found to reduce the amount of profile broadening caused by TED, as well as reducing the smaller amount of normal thermal-equilibrium diffusion which is related to thermal budget. The results show why high ramp rates lead to improved B-implant activation and junction-depth control in Si devices. An Ostwald ripening model of interstitial-cluster evolution describes the detailed trends in the data and predicts further improvements in the case of ultrarapid annealing.\u3c/p\u3
- …
