2,058 research outputs found
A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis
Vascular injury is a serious complication of sepsis due to the gram-negative bacterium Neisseria meningitidis. One of the critical early steps in initiating this injury is via the interaction of leucocytes, particularly neutrophils, with adhesion molecules expressed on inflamed endothelium. We have previously demonstrated that both lipopolysaccharide (LPS) and non-LPS components of meningococci can induce very high levels of expression of the vascular endothelial cell adhesion molecule E-selectin, which is critical for early tethering and capture of neutrophils onto endothelium under flow. Using an LPS-deficient strain of meningococcus, we showed that very high levels of expression can be induced in primary endothelial cells, even in the context of weak activation of the major host signal transduction factor [nuclear factor-κB (NF-κB)]. In this study, we show that the particular propensity for N. meningitidis to induce high levels of expression is regulated at a transcriptional level, and demonstrate a significant role for phosphorylation of the ATF2 transcription factor, likely via mitogen-activated protein (MAP) kinases, on the activity of the E-selectin promoter. Furthermore, inhibition of E-selectin expression in response to the lpxA- strain by a p38 inhibitor indicates a significant role of a p38-dependent MAPK signalling pathway in ATF2 activation. Collectively, these data highlight the role that LPS and other bacterial components have in modulating endothelial function and their involvement in the pathogenesis of meningococcal sepsis. Better understanding of these multiple mechanisms induced by complex stimuli such as bacteria, and the specific inflammatory pathways they activate, may lead to improved, focused interventions in both meningococcal and potentially bacterial sepsis more generally
Heterotic strings on G_2 orbifolds
We study compactification of heterotic strings to three dimensions on
orbifolds of G_2 holonomy. We consider the standard embedding and show that the
gauge group is broken from E_8 x E_8 or SO(32) to F_4 x E_8 or SO(25)
respectively. We also compute the spectrum of massless states and compare with
the results obtained from reduction of the 10-dimensional fields. Non-standard
embeddings are discussed briefly. For type II compactifications we verify that
IIB and IIA have equal massless spectrum.Comment: LaTex, 21 page
Towards Spinfoam Cosmology
We compute the transition amplitude between coherent quantum-states of
geometry peaked on homogeneous isotropic metrics. We use the holomorphic
representations of loop quantum gravity and the
Kaminski-Kisielowski-Lewandowski generalization of the new vertex, and work at
first order in the vertex expansion, second order in the graph (multipole)
expansion, and first order in 1/volume. We show that the resulting amplitude is
in the kernel of a differential operator whose classical limit is the canonical
hamiltonian of a Friedmann-Robertson-Walker cosmology. This result is an
indication that the dynamics of loop quantum gravity defined by the new vertex
yields the Friedmann equation in the appropriate limit.Comment: 8 page
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Cross-sectional analysis of association between socioeconomic status and utilization of primary total hip joint replacements 2006-7 : Australian orthopaedic association national joint replacement registry
Background The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia.Methods Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006–7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk.Results Females accounted for 46.9% of the 642 primary THR performed during 2006–7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70–79 years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups.Conclusions Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA. <br /
Massive amplitudes on the Coulomb branch of N=4 SYM
We initiate a systematic study of amplitudes with massive external particles
on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that
(multi-)soft-scalar limits of massless amplitudes at the origin of moduli space
can be used to determine Coulomb-branch amplitudes to leading order in the
mass. This is demonstrated in numerous examples. 2) We find compact explicit
expressions for several towers of tree-level amplitudes, including scattering
of two massive W-bosons with any number of positive helicity gluons, valid for
all values of the mass. 3) We present the general structure of superamplitudes
on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is
proportional to a Grassmann polynomial of mixed degree 4 to 12, which is
uniquely determined by supersymmetry. We find explicit tree-level
superamplitudes for this MHV band and for other simple sectors of the theory.
4) Dual conformal generators are constructed, and we explore the dual conformal
properties of the simplest massive amplitudes. Our compact expressions for
amplitudes and superamplitudes should be of both theoretical and
phenomenological interest; in particular the tree-level results carry over to
truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome
Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE
playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
R^4 counterterm and E7(7) symmetry in maximal supergravity
The coefficient of a potential R^4 counterterm in N=8 supergravity has been
shown previously to vanish in an explicit three-loop calculation. The R^4 term
respects N=8 supersymmetry; hence this result poses the question of whether
another symmetry could be responsible for the cancellation of the three-loop
divergence. In this article we investigate possible restrictions from the coset
symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as
well as a double-soft scalar limit relation derived recently by Arkani-Hamed et
al. We implement these relations for the matrix elements of the R^4 term that
occurs in the low-energy expansion of closed-string tree-level amplitudes. We
find that the matrix elements of R^4 that we investigated all obey the
double-soft scalar limit relation, including certain
non-maximally-helicity-violating six-point amplitudes. However, the single-soft
limit does not vanish for this latter set of amplitudes, which suggests that
the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
- …
