231 research outputs found

    Effect of metal-cored filler wire on surface morphology and micro-hardness of regulated metal deposition welded ASTM 3 A387 - Gr.11-Cl.2 steel plates

    Get PDF
    Environmental and human-friendly welding is the need of the hour. In this context, this study explores the application of the regulated metal deposition (RMD) technique for ASTM A387-Gr.11-Cl.2 steel plates. To examine the effect of metal-cored filler wire (MCFW), MEGAFIL 237 M was employed during regulated metal deposition (RMD) welding of 6 mm thick ASTM A387-Gr.11-Cl.2 steel plates. The welding was carried out at an optimized current (A) of 100 A, voltage (V) of 13 V, and gas flow rate (GFR) of 21 L/min. Thereafter, the as-welded plates were examined for morphological changes using optical microscopy. Additionally, the micro-hardness of the as-welded plates was measured to make corroboration with the obtained surface morphologies. In addition to this, the as-welded plates were subjected to heat treatment followed by surface morphology and micro-hardness examination. A comparison was made between the as-welded and heat-treated plates for their obtained surface morphologies and microhardness values. During this, it was observed that the weld zone of as-welded plates has a dendritic surface morphology which is very common in fusion-based welding. Similarly, the weld zone of heat-treated plates has a finer and erratic arrangement of martensite. Moreover, the obtained surface morphologies in the weld zone of as-welded and heat-treated plates have been justified by their respective hardness values of 1588.6 HV and 227.3 HV

    Optimization of selective laser melting parameter for invar material by using JAYA algorithm: comparison with TLBO, GA and JAYA

    Get PDF
    In this study, the hardness and surface roughness of selective laser-melted parts have been evaluated by considering a wide variety of input parameters. The Invar-36 has been considered a workpiece material that is mainly used in the aerospace industry for making parts as well as widely used in bimetallic thermostats. It is the mechanical properties and metallurgical properties of parts that drive the final product’s quality in today’s competitive marketplace. The study aims to examine how laser power, scanning speed, and orientation influence fabricated specimens. Using ANOVA, the established models were tested and the parameters were evaluated for their significance in predicting response. In the next step, the fuzzy-based JAYA algorithm has been implemented to determine which parameter is optimal in the proposed study. In addition, the optimal parametric combination obtained by the JAYA algorithm was compared with the optimal parametric combination obtained by TLBO and genetic algorithm (GA) to establish the effectiveness of the JAYA algorithm. Based on the results, an orientation of 90°, 136 KW of laser power, and 650 mm/s scanning speed were found to be the best combination of process parameters for generating the desired hardness and roughness for the Invar-36 material

    Formability Characterization of Titanium Alloy Sheets

    Get PDF

    Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

    Get PDF
    During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively

    Creep Crack Growth Modeling of Low Alloy Steel using Artificial Neural Network

    Get PDF
    Abstract: Prediction of crack growth under creep condition is prime requirement in order to avoid costly and timeconsuming creep crack growth tests. To predict, in a reliable way, the growth of a major crack in a structural components operating at high temperatures, requires a fracture mechanics based approach. In this Study a novel technique, which uses Finite Element Method (FEM) together with Artificial Neural Networks (ANN) has been developed to predict the fracture mechanics parameter (C*) in a 1%Cr1%MoV low alloy rotor steel under wide range of loading and temperatures. After confirming the validity of the FEM model with experimental data, a collection of numerical and experimental data has been used for training the various neural networks models. Three networks have been used to simulate the process, the perceptron multilayer network with tangent transfer function that uses 9 neurons in the hidden layer, gives the best results. Finally, for validation three case studies at 538°C, 550°C and 594°C temperatures are employed. The proposed model has proved that a combinations of ANN and FEM simulation performs well in estimation of C* and it is a powerful designing tool for creep crack growth characterization

    Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

    Get PDF
    During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively

    Combined Visibility and Surrounding Triangles Method for Simulation of Crack Discontinuities in Meshless Methods

    Get PDF
    In this paper a combined node searching algorithm for simulation of crack discontinuities in meshless methods called combined visibility and surrounding triangles (CVT) is proposed. The element free Galerkin (EFG) method is employed for stress analysis of cracked bodies. The proposed node searching algorithm is based on the combination of surrounding triangles and visibility methods; the surrounding triangles method is used for support domains of nodes and quadrature points generated at the vicinity of crack faces and the visibility method is used for points located on the crack faces. In comparison with the conventional methods, such as the visibility, the transparency, and the diffraction method, this method is simpler with reasonable efficiency. To show the performance of this method, linear elastic fracture mechanics analyses are performed on number of standard test specimens and stress intensity factors are calculated. It is shown that the results are in good agreement with the exact solution and with those generated by the finite element method (FEM)

    Functionally graded titanium implants: Characteristic enhancement induced by combined severe plastic deformation

    Get PDF
    Commercially pure titanium was processed by equal channel angular pressing (ECAP) and surface mechanical attrition treatment (SMAT) for the purpose of developing functionally graded titanium used for implants and a gradient structure including nanostructured, deformed and undeformed zones were produced on the samples. In particular, it was aimed to design the gradient-structure in the titanium with enhanced properties by applying 4 ECAP passes to form bulk structure of ultrafine-grains and subsequently subjecting SMAT to the surface of ECAPed samples to produce nanostructured surface region. Microstructural examination was made by electron back scatter diffraction (EBSD). Also, microhardness, nanoindentation, topography, roughness and wettability were evaluated. To examine the biological response, human osteosarcoma cells were cultured in contact with the samples in various time periods and morphology change, cell viability and alkaline phosphate activity were conducted also cell morphology was monitored. EBSD showed development of ultrafine-grained structure after 4 passes of ECAP with an average grain size of 500 nm. Applying SMAT resulted in additional refinement in the ECAP samples, particularly in the subsurface regions to a depth of 112 μm. Furthermore, the SMATed samples showed an enhancement in roughness, wettability and hardness magnitudes. Viability enhanced up to 7% in SMATed + ECAPed sample, although the acceptable cell adhesion, improved cell differentiation and mineralization were seen. The combined use of ECAP and SMAT has shown a good potential for optimizing the design of modern functionally graded medical devices and implants

    Assessment of severe plastic deformation processes in bulk nanostructured metallic glass

    Get PDF
    Themetallic glasses areknownasamorphous andmetastablematerials. Thesematerials Q7 have superior mechanical properties over crystalline materials with the same chemistry. Continuous efforts were made to improve the properties of metallic glass. The severe plastic deformation (SPD) method is used to improve the ductility of the glass. SPD causes the deformation at the atomic level in the disordered structure of the glass. Many methods are reported, such as cryogenic cycling, high-pressure torsion, and equal channel angular pressing, which are used for the SPD. In recent works on nanostructured metallic glasses, it has been evidenced that some properties, for example, mechanical, thermal, and magnetic, have improved compared to the bulk metallic glass. This paper has reviewed the recent progress in the SPD of the bulk and nanostructured metallic glasses. Different methods for the SPD have been addressed here. The effect of SPD on the properties of metallic glass is deliberated in this paper. Moreover, the challenging tasks of deformation occurrence in the glass and its characterization were considered, trying to develop a sound understanding of SPD in bulk and nanostructured metallic glasses
    corecore