275 research outputs found

    Analytical Cost Metrics : Days of Future Past

    Full text link
    As we move towards the exascale era, the new architectures must be capable of running the massive computational problems efficiently. Scientists and researchers are continuously investing in tuning the performance of extreme-scale computational problems. These problems arise in almost all areas of computing, ranging from big data analytics, artificial intelligence, search, machine learning, virtual/augmented reality, computer vision, image/signal processing to computational science and bioinformatics. With Moore's law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. Therefore, the major challenge that we face in computing systems research is: "how to solve massive-scale computational problems in the most time/power/energy efficient manner?" The architectures are constantly evolving making the current performance optimizing strategies less applicable and new strategies to be invented. The solution is for the new architectures, new programming models, and applications to go forward together. Doing this is, however, extremely hard. There are too many design choices in too many dimensions. We propose the following strategy to solve the problem: (i) Models - Develop accurate analytical models (e.g. execution time, energy, silicon area) to predict the cost of executing a given program, and (ii) Complete System Design - Simultaneously optimize all the cost models for the programs (computational problems) to obtain the most time/area/power/energy efficient solution. Such an optimization problem evokes the notion of codesign

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Faster Separators for Shallow Minor-Free Graphs via Dynamic Approximate Distance Oracles

    Full text link
    Plotkin, Rao, and Smith (SODA'97) showed that any graph with mm edges and nn vertices that excludes KhK_h as a depth O(logn)O(\ell\log n)-minor has a separator of size O(n/+h2logn)O(n/\ell + \ell h^2\log n) and that such a separator can be found in O(mn/)O(mn/\ell) time. A time bound of O(m+n2+ϵ/)O(m + n^{2+\epsilon}/\ell) for any constant ϵ>0\epsilon > 0 was later given (W., FOCS'11) which is an improvement for non-sparse graphs. We give three new algorithms. The first has the same separator size and running time O(\mbox{poly}(h)\ell m^{1+\epsilon}). This is a significant improvement for small hh and \ell. If =Ω(nϵ)\ell = \Omega(n^{\epsilon'}) for an arbitrarily small chosen constant ϵ>0\epsilon' > 0, we get a time bound of O(\mbox{poly}(h)\ell n^{1+\epsilon}). The second algorithm achieves the same separator size (with a slightly larger polynomial dependency on hh) and running time O(\mbox{poly}(h)(\sqrt\ell n^{1+\epsilon} + n^{2+\epsilon}/\ell^{3/2})) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). Our third algorithm has running time O(\mbox{poly}(h)\sqrt\ell n^{1+\epsilon}) when =Ω(nϵ)\ell = \Omega(n^{\epsilon'}). It finds a separator of size O(n/\ell) + \tilde O(\mbox{poly}(h)\ell\sqrt n) which is no worse than previous bounds when hh is fixed and =O~(n1/4)\ell = \tilde O(n^{1/4}). A main tool in obtaining our results is a novel application of a decremental approximate distance oracle of Roditty and Zwick.Comment: 16 pages. Full version of the paper that appeared at ICALP'14. Minor fixes regarding the time bounds such that these bounds hold also for non-sparse graph

    Graph-based linear scaling electronic structure theory

    Full text link
    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.Comment: 17 pages, 5 figure

    β\beta-Stars or On Extending a Drawing of a Connected Subgraph

    Full text link
    We consider the problem of extending the drawing of a subgraph of a given plane graph to a drawing of the entire graph using straight-line and polyline edges. We define the notion of star complexity of a polygon and show that a drawing ΓH\Gamma_H of an induced connected subgraph HH can be extended with at most min{h/2,β+log2(h)+1}\min\{ h/2, \beta + \log_2(h) + 1\} bends per edge, where β\beta is the largest star complexity of a face of ΓH\Gamma_H and hh is the size of the largest face of HH. This result significantly improves the previously known upper bound of 72V(H)72|V(H)| [5] for the case where HH is connected. We also show that our bound is worst case optimal up to a small additive constant. Additionally, we provide an indication of complexity of the problem of testing whether a star-shaped inner face can be extended to a straight-line drawing of the graph; this is in contrast to the fact that the same problem is solvable in linear time for the case of star-shaped outer face [9] and convex inner face [13].Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Convex Hull of Points Lying on Lines in o(n log n) Time after Preprocessing

    Full text link
    Motivated by the desire to cope with data imprecision, we study methods for taking advantage of preliminary information about point sets in order to speed up the computation of certain structures associated with them. In particular, we study the following problem: given a set L of n lines in the plane, we wish to preprocess L such that later, upon receiving a set P of n points, each of which lies on a distinct line of L, we can construct the convex hull of P efficiently. We show that in quadratic time and space it is possible to construct a data structure on L that enables us to compute the convex hull of any such point set P in O(n alpha(n) log* n) expected time. If we further assume that the points are "oblivious" with respect to the data structure, the running time improves to O(n alpha(n)). The analysis applies almost verbatim when L is a set of line-segments, and yields similar asymptotic bounds. We present several extensions, including a trade-off between space and query time and an output-sensitive algorithm. We also study the "dual problem" where we show how to efficiently compute the (<= k)-level of n lines in the plane, each of which lies on a distinct point (given in advance). We complement our results by Omega(n log n) lower bounds under the algebraic computation tree model for several related problems, including sorting a set of points (according to, say, their x-order), each of which lies on a given line known in advance. Therefore, the convex hull problem under our setting is easier than sorting, contrary to the "standard" convex hull and sorting problems, in which the two problems require Theta(n log n) steps in the worst case (under the algebraic computation tree model).Comment: 26 pages, 5 figures, 1 appendix; a preliminary version appeared at SoCG 201
    corecore