11,720 research outputs found
Metamodulation of a spinal locomotor network by nitric oxide
Flexibility in the output of spinal networks can be accomplished by the actions of neuromodulators; however, little is known about how the process of neuromodulation itself may be modulated. Here we investigate the potential "meta"-modulatory hierarchy between nitric oxide (NO) and noradrenaline (NA) in Xenopus laevis tadpoles. NO and NA have similar effects on fictive swimming; both potentiate glycinergic inhibition to slow swimming frequency and GABAergic inhibition to reduce episode durations. In addition, both modulators have direct effects on the membrane properties of motor neurons. Here we report that antagonism of noradrenergic pathways with phentolamine dramatically influences the effect of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) on swimming frequency, but not its effect on episode durations. In contrast, scavenging extracellular NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(PTIO) does not influence any of the effects of NA on fictive swimming. These data place NO above NA in the metamodulatory hierarchy, strongly suggesting that NO works via a noradrenergic pathway to control glycine release but directly promotes GABA release. We confirmed this possibility using intracellular recordings from motor neurons. In support of a natural role for NO in the Xenopus locomotor network, PTIO not only antagonized all of the effects of SNAP on swimming but also, when applied on its own, modulated both swimming frequency and episode durations in addition to the underlying glycinergic and GABAergic pathways. Collectively, our results illustrate that NO and NA have parallel effects on motor neuron membrane properties and GABAergic inhibition, but that NO serially metamodulates glycinergic inhibition via NA.Publisher PDFPeer reviewe
Application of Laplacian-based Methods to Multi-echo Phase Data for Accurate Susceptibility Mapping
In Susceptibility Mapping (SM) using multi-echo gradient-echo phase data, unwrapping and/or background-Òeld removal is often performed using Laplacian-based methods.
However, SM pipelines in the literature have applied these methods at di×erent stages. Here, using simulated and acquired images, we compared the performance of three pipelines that apply Laplacian-based methods at di× erent stages. We showed that Laplacian-based methods alter the linearity of the phase over time. We demonstrated that only a processing pipeline that takes this into account, i.e. by Òtting the multi-echo data over time to correctly
estimate a Òeld map before applying Laplacian-based methods, gives accurate susceptibility values
MRI of cerebral micro-vascular flow patterns: A multi-direction diffusion-weighted ASL approach.
The study and clinical assessment of brain disease is currently hindered by a lack of non-invasive methods for the detailed and accurate evaluation of cerebral vascular pathology. Angiography can detect aberrant flow in larger feeding arteries/arterioles but cannot resolve the micro-vascular network. Small vessels are a key site of vascular pathology that can lead to haemorrhage and infarction, which may in turn trigger or exacerbate neurodegenerative processes. In this study, we describe a method to investigate microvascular flow anisotropy using a hybrid arterial spin labelling and multi-direction diffusion-weighted MRI sequence. We present evidence that the technique is sensitive to the mean/predominant direction of microvascular flow in localised regions of the rat cortex. The data provide proof of principle for a novel and non-invasive imaging tool to investigate cerebral micro-vascular flow patterns in healthy and disease states
Let me Google that for you:a time series analysis of seasonality in internet search trends for terms related to foot and ankle pain
BACKGROUND: The analysis of internet search traffic may present the opportunity to gain insights into general trends and patterns in information seeking behaviour related to medical conditions at a population level. For prevalent and widespread problems such as foot and ankle pain, this information has the potential to improve our understanding of seasonality and trends within these conditions and their treatments, and may act as a useful proxy for their true incidence/prevalence characteristics. This study aimed to explore seasonal effects, general trends and relative popularity of internet search terms related to foot and ankle pain over the past decade. METHODS: We used the Google Trends tool to obtain relative search engine traffic for terms relating to foot and ankle pain and common treatments from Google search and affiliated pages for major northern and southern hemisphere English speaking nations. Analysis of overall trends and seasonality including summer/winter differences was carried out on these terms. RESULTS: Searches relating to general foot pain were on average 3.4 times more common than those relating to ankle pain, and twice as common as searches relating to heel pain. Distinct seasonal effects were seen in the northern hemisphere, with large increases in search volumes in the summer months compared to winter for foot (p = 0.004, 95 % CI [22.2–32.1]), ankle (p = 0.0078, 95 % CI [20.9–35.5]), and heel pain (p = 0.004, 95 % CI [29.1–45.6]). These seasonal effects were reflected by data from Australia, with the exception of ankle pain. Annual seasonal effects for treatment options were limited to terms related to foot surgery and ankle orthoses (p = 0.031, 95 % CI [3.5–20.9]; p = 0.004, 95 % CI [7.6–25.2] respectively), again increasing in the summer months. CONCLUSIONS: A number of general trends and annual seasonal effects were found in time series internet search data for terms relating to foot and ankle pain. This data may provide insights into these conditions at population levels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13047-015-0074-9) contains supplementary material, which is available to authorized users
Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications
Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed
Brain imaging evidence of early involvement of subcortical regions in familial and sporadic Alzheimer's disease
Recent brain imaging studies have found changes in subcortical regions in presymptomatic autosomal dominant Alzheimer's disease (ADAD). These regions are also affected in sporadic Alzheimer's disease (sAD), but whether such changes are seen in early-stage disease is still uncertain. In this review, we discuss imaging studies published in the past 12 years that have found evidence of subcortical involvement in early-stage ADAD and/or sAD. Several papers have reported amyloid deposition in the striatum of presymptomatic ADAD mutation carriers, prior to amyloid deposition elsewhere. Altered caudate volume has also been implicated in early-stage ADAD, but findings have been variable. Less is known about subcortical involvement in sAD: the thalamus and striatum have been found to be atrophied in symptomatic patients, but their involvement in the preclinical phase remains unclear, in part due to the difficulties of studying this stage in sporadic disease. Longitudinal imaging studies comparing ADAD mutation carriers with individuals at high-risk for sAD may be needed to elucidate the significance of subcortical involvement in different AD clinical stages
Sarcoidosis of the hypothalamus and pituitary stalk
We report a rare case of sarcoidosis of the hypothalamic and suprasellar region, with clinical course and the magnetic resonance imaging follow-up
On the General Analytical Solution of the Kinematic Cosserat Equations
Based on a Lie symmetry analysis, we construct a closed form solution to the
kinematic part of the (partial differential) Cosserat equations describing the
mechanical behavior of elastic rods. The solution depends on two arbitrary
analytical vector functions and is analytical everywhere except a certain
domain of the independent variables in which one of the arbitrary vector
functions satisfies a simple explicitly given algebraic relation. As our main
theoretical result, in addition to the construction of the solution, we proof
its generality. Based on this observation, a hybrid semi-analytical solver for
highly viscous two-way coupled fluid-rod problems is developed which allows for
the interactive high-fidelity simulations of flagellated microswimmers as a
result of a substantial reduction of the numerical stiffness.Comment: 14 pages, 3 figure
Epiparasitic plants specialized on arbuscular mycorrhizal fungi
Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature
- …
