4,080 research outputs found
Some closure operations in Zariski-Riemann spaces of valuation domains: a survey
In this survey we present several results concerning various topologies that
were introduced in recent years on spaces of valuation domains
Spin Model for Inverse Melting and Inverse Glass Transition
A spin model that displays inverse melting and inverse glass transition is
presented and analyzed. Strong degeneracy of the interacting states of an
individual spin leads to entropic preference of the "ferromagnetic" phase,
while lower energy associated with the non-interacting states yields a
"paramagnetic" phase as temperature decreases. An infinite range model is
solved analytically for constant paramagnetic exchange interaction, while for
its random exchange, analogous results based on the replica symmetric solution
are presented. The qualitative features of this model are shown to resemble a
large class of inverse melting phenomena. First and second order transition
regimes are identified
Epitaxial Growth Kinetics with Interacting Coherent Islands
The Stranski-Krastanov growth kinetics of undislocated (coherent)
3-dimensional islands is studied with a self-consistent mean field rate theory
that takes account of elastic interactions between the islands. The latter are
presumed to facilitate the detachment of atoms from the islands with a
consequent decrease in their average size. Semi-quantitative agreement with
experiment is found for the time evolution of the total island density and the
mean island size. When combined with scaling ideas, these results provide a
natural way to understand the often-observed initial increase and subsequent
decrease in the width of the coherent island size distribution.Comment: 4 pages, 4 figure
Simulations of the grand design galaxy M51: a case study for analysing tidally induced spiral structure
We present hydrodynamical models of the grand design spiral M51 (NGC 5194),
and its interaction with its companion NGC 5195. Despite the simplicity of our
models, our simulations capture the present day spiral structure of M51
remarkably well, and even reproduce details such as a kink along one spiral
arm, and spiral arm bifurcations. We investigate the offset between the stellar
and gaseous spiral arms, and find at most times (including the present day)
there is no offset between the stars and gas to within our error bars. We also
compare our simulations with recent observational analysis of M51. We compute
the pattern speed versus radius, and like the observations, find no single
global pattern speed. We also show that the spiral arms cannot be fitted well
by logarithmic spirals. We interpret these findings as evidence that M51 does
not exhibit a quasi-steady density wave, as would be predicted by density wave
theory. The internal structure of M51 derives from the complicated and
dynamical interaction with its companion, resulting in spiral arms showing
considerable structure in the form of short-lived kinks and bifurcations.
Rather than trying to model such galaxies in terms of global spiral modes with
fixed pattern speeds, it is more realistic to start from a picture in which the
spiral arms, while not being simple material arms, are the result of tidally
induced kinematic density `waves' or density patterns, which wind up slowly
over time.Comment: 23 pages, 20 figures, accepted for publication in MNRA
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Elastic Constants of Quantum Solids by Path Integral Simulations
Two methods are proposed to evaluate the second-order elastic constants of
quantum mechanically treated solids. One method is based on path-integral
simulations in the (NVT) ensemble using an estimator for elastic constants. The
other method is based on simulations in the (NpT) ensemble exploiting the
relationship between strain fluctuations and elastic constants. The strengths
and weaknesses of the methods are discussed thoroughly. We show how one can
reduce statistical and systematic errors associated with so-called primitive
estimators. The methods are then applied to solid argon at atmospheric
pressures and solid helium 3 (hcp, fcc, and bcc) under varying pressures. Good
agreement with available experimental data on elastic constants is found for
helium 3. Predictions are made for the thermal expectation value of the kinetic
energy of solid helium 3.Comment: 9 pages doublecolumn, 6 figures, submitted to PR
- …
