3,936 research outputs found
Critical velocity ionisation in substellar atmospheres
The observation of radio, X-ray and Hα emission from substellar objects indicates the presence of plasma regions and associated high-energy processes in their surrounding envelopes. This paper numerically simulates and characterises Critical Velocity Ionisation, a potential ionisation process, that can efficiently generate plasma as a result of neutral gas flows interacting with seed magnetized plasmas. By coupling a Gas-MHD interactions code (to simulate the ionisation mechanism) with a substellar global circulation model (to provide the required gas flows) we quantify the spatial extent of the resulting plasma regions, their degree of ionisation and their lifetime for a typical substellar atmosphere. It is found that the typical average ionisation fraction reached at equilibrium (where the ionisation and recombination rates are equal and opposite) ranges from 10-5 to 10-8, at pressures between 10-1 and 10-3 bar, with a trend of increasing ionisation fraction with decreasing atmospheric pressure. The ionisation fractions reached as a result of Critical Velocity Ionisation are sufficient to allow magnetic fields to couple to gas flows in the atmosphere
The MICE luminosity monitor
The MICE experiment will provide the first measurement of ionisation cooling, a technique suitable for reducing the transverse emittance of a tertiary muon beam in a future neutrino factory accelerator facility. MICE is presently in the final stages of commissioning its beam line. The MICE luminosity monitor has proved an invaluable tool throughout this process, providing independent measurements of particle rate from the MICE target, normalisation for beam line detectors and verification of simulation codes
The properties, origin and evolution of stellar clusters in galaxy simulations and observations
We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback
Current-Induced Step Bending Instability on Vicinal Surfaces
We model an apparent instability seen in recent experiments on current
induced step bunching on Si(111) surfaces using a generalized 2D BCF model,
where adatoms have a diffusion bias parallel to the step edges and there is an
attachment barrier at the step edge. We find a new linear instability with
novel step patterns. Monte Carlo simulations on a solid-on-solid model are used
to study the instability beyond the linear regime.Comment: 4 pages, 4 figure
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Polygonal Structures in the Gaseous Disk: Numerical Simulations
The results of numerical simulations of a gaseous disk in the potential of a
stellar spiral density wave are presented. The conditions under which
straightened spiral arm segments (rows) form in the gas component are studied.
These features of the spiral structure were identified in a series of works by
A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a
wide range of model parameters: the pitch angle of the spiral pattern, the
amplitude of the stellar spiral density wave, the disk rotation speed, and the
temperature of the gas component. The results of 2D- and 3D-disk simulations
are compared. The rows in the numerical simulations are shown to be an
essentially nonstationary phenomenon. A statistical analysis of the
distribution of geometric parameters for spiral patterns with rows in the
observed galaxies and the constructed hydrodynamic models shows good agreement.
In particular, the numerical simulations and observations of galaxies give
for the average angles between straight segments.Comment: 22 pages, 10 figure
A quantitative theory of current-induced step bunching on Si(111)
We use a one-dimensional step model to study quantitatively the growth of
step bunches on Si(111) surfaces induced by a direct heating current.
Parameters in the model are fixed from experimental measurements near 900 deg C
under the assumption that there is local mass transport through surface
diffusion and that step motion is limited by the attachment rate of adatoms to
step edges. The direct heating current is treated as an external driving force
acting on each adatom. Numerical calculations show both qualitative and
quantitative agreement with experiment. A force in the step down direction will
destabilize the uniform step train towards step bunching. The average size of
the step bunches grows with electromigration time as t^beta, with beta = 0.5,
in agreement with experiment and with an analytical treatment of the steady
states. The model is extended to include the effect of direct hopping of
adatoms between different terraces. Monte-Carlo simulations of a solid-on-solid
model, using physically motivated assumptions about the dynamics of surface
diffusion and attachment at step edges, are carried out to study two
dimensional features that are left out of the present step model and to test
its validity. These simulations give much better agreement with experiment than
previous work. We find a new step bending instability when the driving force is
along the step edge direction. This instability causes the formation of step
bunches and antisteps that is similar to that observed in experiment.Comment: 11 pages, 7 figure
Transient thermal effects in solid noble gases as materials for the detection of Dark Matter
The transient phenomena produced in solid noble gases by the stopping of the
recoils resulting from the elastic scattering processes of WIMPs from the
galactic halo were modelled, as dependencies of the temperatures of lattice and
electronic subsystems on the distance to the recoil's trajectory, and time from
its passage. The peculiarities of these thermal transients produced in Ar, Kr
and Xe were analysed for different initial temperatures and WIMP energies, and
were correlated with the characteristics of the targets and with the energy
loss of the recoils. The results were compared with the thermal spikes produced
by the same WIMPs in Si and Ge. In the range of the energy of interest, up to
tens of keV for the self-recoil, local phase transitions solid - liquid and
even liquid - gas were found possible, and the threshold parameters were
established.Comment: Minor corrections and updated references; accepted to JCA
Transient elastohydrodynamic lubrication analysis of a novel metal-on-metal hip prosthesis with a non-spherical femoral bearing surface
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry
Rate theory for correlated processes: Double-jumps in adatom diffusion
We study the rate of activated motion over multiple barriers, in particular
the correlated double-jump of an adatom diffusing on a missing-row
reconstructed Platinum (110) surface. We develop a Transition Path Theory,
showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double-jump. We explicitly calculate this trajectory
within an effective-medium molecular dynamics simulation. A cusp in the
acceptance region leads to a sqrt{T} prefactor for the activated rate of
double-jumps. Theory and numerical results agree
- …
