435 research outputs found
A Web-based Intervention for Abused Women: The New Zealand Isafe Randomised Controlled Trial Protocol
Background: Intimate partner violence (IPV) and its associated negative mental health consequences are significant for women in New Zealand and internationally. One of the most widely recommended interventions is safety
planning. However, few women experiencing violence access specialist services for safety planning. A safety decision aid, weighing the dangers of leaving or staying in an abusive relationship, gives women the opportunity
to prioritise, plan and take action to increase safety for themselves and their children. This randomised controlled trial is testing the effectiveness of an innovative, interactive web-based safety decision aid. The trial is an international collaborative concurrent replication of a USA trial (IRIS study NCT01312103), regionalised for the Aotearoa New Zealand
culture and offers fully automated online trial recruitment, eligibility screening and consent.
Methods/Design: In a fully automated web-based trial (isafe) 340 abused women will be randomly assigned in equal numbers to a safety decision aid intervention or usual safety planning control website. Intervention components include: (a) safety priority setting, (b) danger assessment and (c) an individually tailored safety action plan. Self-reported outcome measures are collected at baseline and 3, 6, and 12-months post-baseline.
Primary outcomes are depression (measured by Center for Epidemiologic Studies Depression Scale, Revised) and IPV exposure (measured by Severity Violence Against Women Scale) at 12 months post-baseline. Secondary outcomes
include PTSD, psychological abuse, decisional conflict, safety behaviors and danger in the relationship.
Discussion: This trial will provide much-needed information on the potential relationships mong safety planning, improved mental health, reduced violence as well as decreased decisional conflict related to safety in the abusive relationship. The novel web-based safety decision aid intervention may provide a cost-effective, easily accessed safety-planning resource that can be translated into clinical and community practice by multiple health disciplines and advocates. The trial will also provide information about how women in abusive relationships safely access safety
information and resources through the Internet.
Finally, the trial will inform other research teams on the feasibility and acceptability of fully automated recruitment, eligibility screening, consent and retention procedures.
Trial registration: Trial registered on 03 July 2012 on the Australian New Zealand Clinical Trials Registry ACTRN12612000708853
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes
Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-γ inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response
Recommended from our members
Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions
We perform a joint analysis of the auto and cross-correlations between three
cosmic fields: the galaxy density field, the galaxy weak lensing shear field,
and the cosmic microwave background (CMB) weak lensing convergence field. These
three fields are measured using roughly 1300 sq. deg. of overlapping optical
imaging data from first year observations of the Dark Energy Survey and
millimeter-wave observations of the CMB from both the South Pole Telescope
Sunyaev-Zel'dovich survey and Planck. We present cosmological constraints from
the joint analysis of the two-point correlation functions between galaxy
density and galaxy shear with CMB lensing. We test for consistency between
these measurements and the DES-only two-point function measurements, finding no
evidence for inconsistency in the context of flat CDM cosmological
models. Performing a joint analysis of five of the possible correlation
functions between these fields (excluding only the CMB lensing autospectrum)
yields and . We test
for consistency between these five correlation function measurements and the
Planck-only measurement of the CMB lensing autospectrum, again finding no
evidence for inconsistency in the context of flat CDM models.
Combining constraints from all six two-point functions yields
and .
These results provide a powerful test and confirmation of the results from the
first year DES joint-probes analysis
Recommended from our members
Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole Telescope+Planck
We measure the cross-correlation between redMaGiC galaxies selected from the Dark Energy Survey (DES) year 1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 1289 deg2. When combining measurements across multiple galaxy redshift bins spanning the redshift range of 0.1
Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
Recommended from our members
Cosmological lensing ratios with des Y1, SPT, and Planck
Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance CDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation
Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning
Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
Recommended from our members
Mass Calibration of Optically Selected des Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
We use cosmic microwave background (CMB) temperature maps from the 500 deg 2 SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel'dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz data sets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7σ(6.7σ) with the flux (volume)-limited sample. By modeling the reconstructed convergence using the Navarro-Frenk-White profile, we find the average lensing masses to be M 200m = (1.62 -0.25+0.32 [stat] ± 0.04 [sys.]) and (1.28 -0.18+0.14 [stat] ± 0.03[sys.])× 10 14 M ⊙ for the volume- and flux-limited samples, respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES
- …
