240 research outputs found
New model for system of mesoscopic Josephson contacts
Quantum fluctuations of the phases of the order parameter in 2D arrays of
mesoscopic Josephson junctions and their effect on the destruction of
superconductivity in the system are investigated by means of a quantum-cosine
model that is free of the incorrect application of the phase operator. The
proposed model employs trigonometric phase operators and makes it possible to
study arrays of small superconducting granules, pores filled with superfluid
helium, or Josephson junctions in which the average number of particles
(effective bosons, He atoms, and so on) is small, and the standard approach
employing the phase operator and the particle number operator as conjugate ones
is inapplicable. There is a large difference in the phase diagrams between
arrays of macroscopic and mesoscopic objects for and ( is
the characteristic interaction energy of the particle per granule and is
the Josephson coupling constant). Reentrant superconductivity phenomena are
discussed.Comment: 4 pages, 3 Postscript figure
Statistical Mechanics of Structural Fluctuations
The theory of mesoscopic fluctuations is applied to inhomogeneous solids
consisting of chaotically distributed regions with different crystalline
structure. This approach makes it possible to describe statistical properties
of such mixture by constructing a renormalized Hamiltonian. The relative
volumes occupied by each of the coexisting structures define the corresponding
geometric probabilities. In the case of a frozen heterophase system these
probabilities should be given a priori. And in the case of a thermal
heterophase mixture the structural probabilities are to be defined
self-consistently by minimizing a thermodynamical potential. This permits to
find the temperature behavior of the probabilities which is especially
important near the points of structural phase transitions. The presense of
these structural fluctuations yields a softening of a crystal and a decrease of
the effective Debye temperature. These effects can be directly seen by nuclear
gamma resonance since the occurrence of structural fluctuations is accompanied
by a noticeable sagging of the M\"ossbauer factor at the point of structural
phase transition. The structural fluctuations also lead to the attenuation of
sound and increase of isothermic compressibility.Comment: 1 file, 18 pages, RevTex, no figure
PERINATAL COMPLIANCE: A MULTIDISCIPLINARY APPROACH TO PROTECT THE MENTAL HEALTH OF WOMEN DURING PREGNANCY
Josephson array of mesoscopic objects. Modulation of system properties through the chemical potential
The phase diagram of a two-dimensional Josephson array of mesoscopic objects
is examined. Quantum fluctuations in both the modulus and phase of the
superconducting order parameter are taken into account within a lattice boson
Hubbard model. Modulating the average occupation number of the sites in
the system leads to changes in the state of the array, and the character of
these changes depends significantly on the region of the phase diagram being
examined. In the region where there are large quantum fluctuations in the phase
of the superconducting order parameter, variation of the chemical potential
causes oscillations with alternating superconducting (superfluid) and normal
states of the array. On the other hand, in the region where the bosons interact
weakly, the properties of the system depend monotonically on . Lowering
the temperature and increasing the particle interaction force lead to a
reduction in the width of the region of variation in within which the
system properties depend weakly on the average occupation number. The phase
diagram of the array is obtained by mapping this quantum system onto a
classical two-dimensional XY model with a renormalized Josephson coupling
constant and is consistent with our quantum Path-Integral Monte Carlo
calculations.Comment: 12 pages, 8 Postscript figure
Electron Correlations in an Electron Bilayer at Finite Temperature: Landau Damping of the Acoustic Plasmon
We report angle-resolved Raman scattering observations of the temperature
dependent Landau damping of the acoustic plasmon in an electron bilayer system
realised in a GaAs double quantum well structure. Corresponding calculations of
the charge-density excitation spectrum of the electron bilayer using forms of
the random phase approximation (RPA), and the static local field formalism of
Singwi, Tosi, Land and Sj\"{o}lander (STLS) extended to incorporate non-zero
electron temperature and phenomenological damping, are also
presented. The STLS calculations include details of the temperature dependence
of the intra- and inter-layer local field factors and pair-correlation
functions. Good agreement between experiment and the various theories is
obtained for the acoustic plasmon energy and damping for , the Fermi temperature. However, contrary to current expectations,
all of the calculations show significant departures from our experimental data
for . From this, we go on to demonstrate
unambiguously that real local field factors fail to provide a physically
accurate description of exchange correlation behaviour in low dimensional
electron gases. Our results suggest instead that one must resort to a
{\em{dynamical}} local field theory, characterised by a {\em{complex}} field
factor to provide a more accurate description.Comment: 53 pages, 16 figure
Temperature dependence of the EPR linewidth of Yb3+ - ions in Y0.99Yb0.01Ba2Cu3OX compounds: Evidence for an anomaly near TC
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO
compounds with different oxygen contents have been made. We have observed the
strong temperature dependence of the EPR linewidth in the all investigated
samples caused by the Raman processes of spin-lattice relaxation. The
spin-lattice relaxation rate anomaly revealed near TC in the superconducting
species can be assigned to the phonon density spectrum changesComment: 10 pages, 4 figures Renewed versio
Judicial Power and Judicial System: Review of the international scientific and practical conference
- …
