291 research outputs found
Repetition and difference: Lefebvre, Le Corbusier and modernity's (im)moral landscape: a commentary
This article engages with the relationship between social theory, architectural theory and material culture. The article is a reply to an article in a previous volume of the journal in question (Smith, M. (2001) ‘Repetition and difference: Lefebvre, Le Corbusier and modernity’s (im)moral landscape’, Ethics, Place and Environment, 4(1), 31-34) and, consequently, is also a direct engagement with another academic's scholarship. It represents a critique of their work as well as a recasting of their ideas, arguing that the matter in question went beyond interpretative issues to a direct critique of another author's scholarship on both Le Corbusier and Lefebvre. A reply to my article from the author of the original article was carried in a later issue of the journal (Smith, M. (2002) ‘Ethical Difference(s): a Response to Maycroft on Le Corbusier and Lefebvre’, Ethics, Place and Environment, 5(3), 260-269)
Drop on demand sample delivery for studying biocatalysts in action at X ray free electron lasers
A Halogen Bonding [2]Rotaxane Shuttle for Chloride‐Selective Optical Sensing
The first example of a [2]rotaxane shuttle capable of selective optical sensing of chloride anions over other halides is reported. The rotaxane was synthesised via a chloride ion template‐directed cyclisation of an isophthalamide macrocycle around a multi‐station axle containing peripheral naphthalene diimide (NDI) stations and a halogen bonding (XB) bis(iodotriazole) based station. Proton NMR studies indicate the macrocycle resides preferentially at the NDI stations in the free rotaxane, where it is stabilised by aromatic donor‐acceptor charge transfer interactions between the axle NDI and macrocycle hydroquinone moieties. Addition of chloride ions in an aqueous‐acetone solvent mixture induces macrocycle translocation to the XB anion binding station to facilitate the formation of convergent XB⋅⋅⋅Cl− and hydrogen bonding HB⋅⋅⋅Cl− interactions, which is accompanied by a reduction of the charge‐transfer absorption band. Importantly, little to no optical response was induced by addition of bromide or iodide to the rotaxane, indicative of the size discriminative steric inaccessibility of the interlocked cavity to the larger halides, demonstrating the potential of using the mechanical bond effect as a potent strategy and tool in chloride‐selective chemo‐sensing applications in aqueous containing solvent environments
A critical evaluation of predictive models for rooted soil strength with application to predicting the seismic deformation of rooted slopes
This paper presents a comparative study of three different classes of model for estimating the reinforcing effect of plant roots in soil, namely (i) fibre pull-out model, (ii) fibre break models (including Wu and Waldron’s Model (WWM) and the Fibre Bundle Model (FBM)) and (iii) beam bending or p-y models (specifically Beam on a Non-linear Winkler-Foundation (BNWF) models). Firstly, the prediction model of root reinforcement based on pull-out being the dominant mechanism for different potential slip plane depths was proposed. The resulting root reinforcement calculated were then compared with those derived from the other two types of models. The estimated rooted soil strength distributions were then incorporated within a fully dynamic, plane-strain continuum finite element model to assess the consequences of the selection of rooted soil strength model on the global seismic stability of a vegetated slope (assessed via accumulated slip during earthquake shaking). For the particular case considered in this paper (no roots were observed to have broken after shearing), root cohesion predicted by the pull-out model is much closer to that the BNWF model, but is largely over-predicted by the family of fibre break models. In terms of the effects on the stability of vegetated slopes, there exists a threshold value beyond which the position of the critical slip plane would bypass the rooted zones, rather than passing through them. Further increase of root cohesion beyond this value has minimal effect on the global slope behaviour. This implies that significantly over-predicted root cohesion from fibre break models when used to model roots with non-negligible bending stiffness may still provide a reasonable prediction of overall behaviour, so long as the critical failure mechanism is already bypassing the root-reinforced zones. © 2019, The Author(s)
Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides
Vegetation has been previously proposed as a method for protecting artificial and natural slopes against shallow landslides (e.g. as may be triggered by an earthquake); however, previous research has concentrated on individual root soil interaction during shear deformation rather than the global slope behaviour due to the extreme expense and difficulty involved in conducting full-scale field tests. Geotechnical centrifuge modelling offers an opportunity to investigate in detail the engineering performance of vegetated slopes, but its application has been restricted due to the lack of availability of suitable root analogues that can repeatably replicate appropriate mechanical properties (stiffness and strength) and realistic 3-D geometry. This study employed 3-D printing to develop a representative and repeatable 1:10 scale model of a tree root cluster representing roots up to 1.5 m deep at prototype scale) that can be used within a geotechnical centrifuge to investigate the response of a vegetated slope subject to earthquake ground motion. The printed Acrylonitrile Butadiene Styrene (ABS) plastic root model was identified to be highly representative of the geometry and mechanical behaviour (stiffness and strength) of real woody root systems. A programme of large direct shear tests was also performed to evaluate the additional strength provided by the root analogues within soil that is slipping and investigate the influence of various characteristics (including root area ratio, soil confining effective stress and root morphology) on this reinforcing effect. Our results show that root reinforcement is not only a function of root mechanical properties, but also depends on factors including surrounding effective confining stress (resulting in depth dependency even for the same RAR), depth of the slip plane and root morphology. When subject to shear loading in soil, the tap root appeared to structurally transfer load within the root system, including to smaller and deeper roots which subsequently broke or were pulled out. Finally, the root analogues were added to model slopes subjected toearthquake ground motion in the centrifuge, where it was revealed that vegetation can substantially reduce earthquake-induced slope deformation in the soil conditions tested (76% reduction on crest permanent settlement during slippage). Both the realistic 3-D geometry and highly simplified root morphologies, as characterised mechanically by the shear tests, were tested in the centrifuge which, despite exhibiting very different levels of additional strength in the shear tests, resulted in very similar responses of the slopes. This suggests that once a certain minimum level of reinforcement has been reached which will alter the deformation mechanism within the slope, further increases of root contribution (e.g. due to differences in root morphology) do not have a large further effect on improving slope stability.<br/
The application of interference fits for overcoming limitations in clamping methodologies for cryocooling first crystal configurations in x-ray monochromators
Foreword: Control and Conservation of Lampreys Beyond 2020 – Proceedings from the 3rd Sea Lamprey International Symposium (SLIS III)
This special issue summarizes outcomes from the 3rd Sea Lamprey International Symposium (SLIS III; Fig. 1) held 28 July – 2 August 2019 at Wayne State University in Detroit, Michigan, U.S.A. The first two symposia (SLIS I and SLIS II) were held 30 July – 8 August 1979 at Northern Michigan University in Marquette, Michigan and 14–18 August 2000 at Lake Superior State University in Sault Ste. Marie, Michigan, respectively. The published volumes from these symposia in 1980 (Canadian Journal of Fisheries and Aquatic Sciences, Volume 37, Issue 11) and 2003 (Journal of Great Lakes Research Volume 29, Supplement 1) have been invaluable references for the broader scientific community and for management agencies around the Laurentian Great Lakes; cited over 4800 and 3300 times, respectively. SLIS III was attended by over 150 scientists, biologists, resource managers, graduate students, and Commission advisors, including participants from Australia, Canada, China, Japan, New Zealand, Portugal, Spain, the United Kingdom, and the United States (Fig. 2). Similar to SLIS I and SLIS II, the goals of SLIS III were to provide a forum to (i) update and publish information on sea lamprey control and research on lampreys since SLIS II, (ii) exchange knowledge and ideas to bring practitioners to a common plateau of understanding, and (iii) develop innovative initiatives and stimulate new vigor in efforts to control sea lamprey in the Great Lakes and to conserve lampreys in their native ranges. The emphasis on conservation of lampreys is unique to SLIS III and reflects a heightened international recognition that scientific and management advances supporting sea lamprey control in the Great Lakes can benefit the global effort to conserve native lampreys and vice versa
Technoscience and the modernization of freshwater fisheries assessment and management
Inland fisheries assessment and management are challenging given the inherent com-
plexity of working in diverse habitats (e.g., rivers, lakes, wetlands) that are dynamic
on organisms that are often cryptic and where fishers are often highly mobile. Yet,
technoscience is offering new tools that have the potential to reimagine how inland
fisheries are assessed and managed. So-called ‘‘technoscience’’ refers to instances in
which science and technology unfurl together, offering novel ways of spurring and
achieving meaningful change. This paper considers the role of technoscience and its
potential for modernizing the assessment and management of inland fisheries. It first
explores technoscience and its potential benefits, followed by presentation of a series
of synopses that explore the application (both successes and challenges) of new tech-
nologies such as environmental DNA (eDNA), genomics, electronic tags, drones, phone
apps, iEcology, and artificial intelligence to assessment and management. The paper
also considers the challenges and barriers that exist in adopting new technologies. The
paper concludes with a provocative assessment of the potential of technoscience to
reform and modernize inland fisheries assessment and management. Although these
tools are increasingly being embraced, there is a lack of platforms for aggregating these
data streams and providing managers with actionable information in a timely manner.
The ideas presented here should serve as a catalyst for beginning to work collectively
and collaboratively towards fisheries assessment and management systems that harness
the power of technology and serve to modernize inland fisheries management. Such
transformation is urgently needed given the dynamic nature of environmental change,
the evolving threat matrix facing inland waters, and the complex behavior of fishers.
Quite simply, a dynamic world demands dynamic fisheries management; technoscience
has made that within reach.publishedVersio
Contrasting physiological responses between invasive sea lamprey and non-target bluegill in response to acute lampricide exposure
Control of invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes of North America uses lampricides, which consist of 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide. Lampricides are thought to inhibit aerobic energy synthesis, with TFM having a relatively greater selective action against lampreys. While the toxicity and physiological effects of TFM are known, the impacts associated with exposure to niclosamide and TFM:niclosamide mixtures are poorly characterized in fishes. Therefore, focusing on energy metabolism, we quantified the physiological responses of larval sea lamprey and bluegill (Lepomis macrochirus), a non-target, native species. Exposures consisted of each lampricide alone (TFM at the species-specific 24 h LC10; niclosamide at 1.5% of the mixture's TFM concentration) or a mixture of the two (larval sea lamprey at TFM 24 h LC10 + 1.5% niclosamide; bluegill at sea lamprey's TFM 24 h LC99.9 + 1.5% niclosamide) for 24 h. Tissues (brain, skeletal muscle, and liver) were sampled at 6, 12, and 24 h of exposure and assayed for concentrations of ATP, phosphocreatine, glycogen, lactate, and glucose and tissue lampricide levels. In larval sea lamprey, TFM had little effect on brain and skeletal muscle, but niclosamide resulted in a depletion of high energy substrates in both tissues. Mixture-exposed lamprey showed depletion of high energy substrates, accumulation of lactate, and high mortality rates. Bluegill were largely unaffected by toxicant exposures. However, bluegill liver showed lower glycogen and lactate under all three toxicant exposures suggesting increased metabolic turnover. Bluegill also had lower concentrations of TFM and niclosamide in their tissues when compared to lamprey. Our results indicate that lampricide toxicity in sea lamprey larvae is mediated through a depletion of high energy substrates because of impaired aerobic ATP synthesis. We also confirmed that non-target bluegill showed high tolerance to lampricide exposure, an effect potentially mediated through a high detoxification capacity relative to lampreys.Fisheries and Oceans Canada||Great Lakes Fishery Commission (Grant #2018_JEF_54072)||University of Manitoba||Natural Sciences and Engineering Research Council of Canada(#05479
A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly
Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to life-long neurological handicap. Collectively NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n=85 anencephaly and n=5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N=509), we identified 397 rare variants (MAF<1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly
- …
