1,332 research outputs found

    Nonlinear frequency shift of electrostatic waves in general collisionless plasma: unifying theory of fluid and kinetic nonlinearities

    Full text link
    The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves

    Are perytons signatures of ball lightning?

    Full text link
    The enigmatic downchirped signals, called "perytons", that are detected by radio telescopes in the GHz frequency range may be produced by an atmospheric phenomenon known as ball lightning (BL). If BLs act as nonstationary radiofrequency cavities, their characteristic emission frequencies and evolution time scales are consistent with peryton observations, and so are general patterns in which BLs are known to occur. Based on this evidence, testable predictions are made that can confirm or rule out a causal connection between perytons and BLs. In either case, how perytons are searched for in observational data may warrant reconsideration, for existing procedures may be discarding events that has the same nature as known perytons

    First-principle variational formulation of polarization effects in geometrical optics

    Full text link
    The propagation of electromagnetic waves in isotropic dielectric media with local dispersion is studied under the assumption of small but nonvanishing λ/l\lambda/l, where λ\lambda is the wavelength, and ll is the characteristic inhomogeneity scale. It is commonly known that, due to nonzero λ/l\lambda/l, such waves can experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the wave "spin". The present work reports how Lagrangians describing these effects can be deduced, rather than guessed, within a strictly classical theory. In addition to the commonly known ray Lagrangian featuring the Berry connection, a simple alternative Lagrangian is proposed that naturally has a canonical form. The presented theory captures not only eigenray dynamics but also the dynamics of continuous wave fields and rays with mixed polarization, or "entangled" waves. The calculation assumes stationary lossless media with isotropic local dispersion, but generalizations to other media are straightforward to do.Comment: 9 pages, 1 figur

    On applications of quantum computing to plasma simulations

    Full text link
    Quantum computing is gaining increased attention as a potential way to speed up simulations of physical systems, and it is also of interest to apply it to simulations of classical plasmas. However, quantum information science is traditionally aimed at modeling linear Hamiltonian systems of a particular form that is found in quantum mechanics, so extending the existing results to plasma applications remains a challenge. Here, we report a preliminary exploration of the long-term opportunities and likely obstacles in this area. First, we show that many plasma-wave problems are naturally representable in a quantumlike form and thus are naturally fit for quantum computers. Second, we consider more general plasma problems that include non-Hermitian dynamics (instabilities, irreversible dissipation) and nonlinearities. We show that by extending the configuration space, such systems can also be represented in a quantumlike form and thus can be simulated with quantum computers too, albeit that requires more computational resources compared to the first case. Third, we outline potential applications of hybrid quantum-classical computers, which include analysis of global eigenmodes and also an alternative approach to nonlinear simulations

    Non-LTE Modelling of the Structure and Spectra of the Hot Accretion Spots on the Surface of Young Stars

    Full text link
    The paper describes the modelling of the structure and spectra of the hot accretion spots on the surface of young stars with taking into account departures from LTE for hydrogen and helium. It has been found that the existence of the ram pressure of the in-falling gas at the outer boundary of the hot spot leads to the Stark broadening of the hydrogen line profiles up to FWHM of about 1000 km/s at the considered accretion parameters. It is shown that taking into account departures from LTE for atoms and ions of carbon and oxygen does not lead to noticeable changes in the structure of the hot spot.Comment: accepted for publication in Astronomy Letter
    corecore