546 research outputs found

    Numerical analysis of different heating systems for warm sheet metal forming

    Get PDF
    The main goal of this study is to present an analysis of different heating methods frequently used in laboratory scale and in the industrial practice to heat blanks at warm temperatures. In this context, the blank can be heated inside the forming tools (internal method) or using a heating system (external method). In order to perform this analysis, a finite element model is firstly validated with the simulation of the direct resistance system used in a Gleeble testing machine. The predicted temperature was compared with the temperature distribution recorded experimentally and a good agreement was found. Afterwards, a finite element model is used to predict the temperature distribution in the blank during the heating process, when using different heating methods. The analysis also includes the evaluation of a cooling phase associated to the transport phase for the external heating methods. The results of this analysis show that neglecting the heating phase and a transport phase could lead to inaccuracies in the simulation of the forming phase.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012 and by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade, under the project CENTRO-07-0224-FEDER-002001 (MT4MOBI). The authors would like to thank Prof. A. Andrade-Campos for helpful contributions on the development of the finite element code presented in this work.info:eu-repo/semantics/publishedVersio

    Mechanisms and models of somatic cell reprogramming

    Get PDF
    Whitehead Institute for Biomedical Research (Jerome and Florence Brill Graduate Student Fellowship)National Institutes of Health (U.S.) (US NIH grant RO1-CA087869)National Institutes of Health (U.S.) (US NIH grant R37-CA084198)National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) ((NIH) Kirschstein National Research Service Award,1 F32 GM099153-01A1)Vertex Pharmaceuticals Incorporated (Vertex Scholar

    Community participation for rural healthcare design: description and critique of a method

    Get PDF
    This paper outlines a community participation process that was developed to engage rural community stakeholders in designing new health services. The paper explains what led up to the process and provides critique around applying the process for other health services and in other communities. Internationally, community participation is widely invoked, but it is only broadly explained in the literature, other than reviews of outcomes or descriptions of problems. This paper provides an actual process, derived from iterative research, that others could use, but explains caveats in the method and its application. From developing this method of community participation for service design, we conclude that rather than being a benign and inherently ‘good thing’, community participation is a process into which health services managers and communities should enter cautiously. Stronger parameters around desirable outcomes and awareness of potential pitfalls in the process are important to address

    i-SNAREs: inhibitory SNAREs that fine-tune the specificity of membrane fusion

    Get PDF
    A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs

    ApoB siRNA-induced Liver Steatosis is Resistant to Clearance by the Loss of Fatty Acid Transport Protein 5 (Fatp5)

    Get PDF
    The association between hypercholesterolemia and elevated serum apolipoprotein B (APOB) has generated interest in APOB as a therapeutic target for patients at risk of developing cardiovascular disease. In the clinic, mipomersen, an antisense oligonucleotide (ASO) APOB inhibitor, was associated with a trend toward increased hepatic triglycerides, and liver steatosis remains a concern. We found that siRNA-mediated knockdown of ApoB led to elevated hepatic triglycerides and liver steatosis in mice engineered to exhibit a human-like lipid profile. Many genes required for fatty acid synthesis were reduced, suggesting that the observed elevation in hepatic triglycerides is maintained by the cell through fatty acid uptake as opposed to fatty acid synthesis. Fatty acid transport protein 5 (Fatp5/Slc27a5) is required for long chain fatty acid (LCFA) uptake and bile acid reconjugation by the liver. Fatp5 knockout mice exhibited lower levels of hepatic triglycerides due to decreased fatty acid uptake, and shRNA-mediated knockdown of Fatp5 protected mice from diet-induced liver steatosis. Here, we evaluated if siRNA-mediated knockdown of Fatp5 was sufficient to alleviate ApoB knockdown-induced steatosis. We determined that, although Fatp5 siRNA treatment was sufficient to increase the proportion of unconjugated bile acids 100-fold, consistent with FATP5's role in bile acid reconjugation, Fatp5 knockdown failed to influence the degree, zonal distribution, or composition of the hepatic triglycerides that accumulated following ApoB siRNA treatment

    Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    Get PDF
    Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections

    Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco?supplementation in Orthobiologics

    Get PDF
    The aim of this study is to review developments in glycosaminoglycan and proteoglycan research relevant to cartilage repair biology and in particular the treatment of osteoarthritis (OA). Glycosaminoglycans decorate a diverse range of extracellular matrix and cell associated proteoglycans conveying structural organization and physico‐chemical properties to tissues. They play key roles mediating cellular interactions with bioactive growth factors, cytokines, and morphogenetic proteins, and structural fibrillar collagens, cell interactive and extracellular matrix proteoglycans, and glycoproteins which define tissue function. Proteoglycan degradation detrimentally affects tissue functional properties. Therapeutic strategies have been developed to counter these degenerative changes. Neo‐proteoglycans prepared from chondroitin sulfate or hyaluronan and hyaluronan or collagen‐binding peptides emulate the interactive, water imbibing, weight bearing, and surface lubricative properties of native proteoglycans. Many neo‐proteoglycans outperform native proteoglycans in terms of water imbibition, matrix stabilization, and resistance to proteolytic degradation. The biospecificity of recombinant proteoglycans however, provides precise attachment to native target molecules. Visco‐supplements augmented with growth factors/therapeutic cells, hyaluronan, and lubricin (orthobiologicals) have the capacity to lubricate and protect cartilage, control inflammation, and promote cartilage repair and regeneration of early cartilage lesions and may represent a more effective therapeutic approach to the treatment of mild to moderate OA and deserve further study
    corecore