3,366 research outputs found

    Inter-Particle Distribution Functions for One-Species Diffusion-Limited Annihilation, A+A->0

    Full text link
    Diffusion-limited annihilation, A+A0A+A\to 0, and coalescence, A+AAA+A\to A, may both be exactly analyzed in one dimension. While the concentrations of AA particles in the two processes bear a simple relation, the inter-particle distribution functions (IPDF) exhibit remarkable differences. However, the IPDF is known exactly only for the coalescence process. We obtain the IPDF for the annihilation process, based on the Glauber spin approach and assuming that the IPDF's of nearest-particle pairs are statistically independent. This assumption is supported by computer simulations. Our analysis sheds further light on the relationship between the annihilation and the coalescence models.Comment: 15 pages, plain TeX, 3 figures - available upon request (snail mail

    Exponentially growing solutions in homogeneous Rayleigh-Benard convection

    Get PDF
    It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient, has a family of exact, exponentially growing, separable solutions of the full non-linear system of equations. These solutions are clearly manifest in numerical simulations above a computable critical value of the Rayleigh number. In our numerical simulations they are subject to secondary numerical noise and resolution dependent instabilities that limit their growth to produce statistically steady turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid communication

    RNA interference screening reveals host CaMK4 as a regulator of cryptococcal uptake and pathogenesis

    Get PDF
    ABSTRACT Cryptococcus neoformans , the causative agent of cryptococcosis, is an opportunistic fungal pathogen that kills over 200,000 individuals annually. This yeast may grow freely in body fluids, but it also flourishes within host cells. Despite extensive research on cryptococcal pathogenesis, host genes involved in the initial engulfment of fungi and subsequent stages of infection are woefully understudied. To address this issue, we combined short interfering RNA silencing and a high-throughput imaging assay to identify host regulators that specifically influence cryptococcal uptake. Of 868 phosphatase and kinase genes assayed, we discovered 79 whose silencing significantly affected cryptococcal engulfment. For 25 of these, the effects were fungus specific, as opposed to general alterations in phagocytosis. Four members of this group significantly and specifically altered cryptococcal uptake; one of them encoded CaMK4, a calcium/calmodulin-dependent protein kinase. Pharmacological inhibition of CaMK4 recapitulated the observed defects in phagocytosis. Furthermore, mice deficient in CaMK4 showed increased survival compared to wild-type mice upon infection with C. neoformans . This increase in survival correlated with decreased expression of pattern recognition receptors on host phagocytes known to recognize C. neoformans . Altogether, we have identified a kinase that is involved in C. neoformans internalization by host cells and in host resistance to this deadly infection. </jats:p

    Design of a large-scale virus capsid model for educational use

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaf 23).A foot-scale model of an icosahedral virus capsid, as opposed to a helical capsid shape, was modeled in preparation for manufacture for educational use. We chose to model the icosahedral virus capsid for manufacture because understanding the structure of this type of capsid is of biological importance, the icosahedral structure is well-established, and because the icosahedral structure and geometry is representative of many viruses, it is important to virology. A small icosahedral virus capsid consists of 60 identical proteins. Larger capsids are formed by adding quasi-equivalent proteins, with 60 copies of each unique protein. Our model calls for the creation of an injection mold for one unique protein. 60 parts should snap together with one another after manufacture to create an icosahedron. The protein was modeled using the SolidWorks computer aided drawing (CAD) software. The CAD model could then be converted to a file that enables us to mill a two part mold out of aluminum blocks. This aluminum mold will then be used to injection mold parts made out of polypropylene. The parting lines and sprue of the final parts will be cleaned up and then assembled to complete the model. This thesis details the specifics of the modeling of this protein, focusing on the design of the attachment method for capsid assembly from a single injection mold.by Heather A. Doering.S.B

    Subdiffusion-limited reactions

    Full text link
    We consider the coagulation dynamics A+A -> A and A+A A and the annihilation dynamics A+A -> 0 for particles moving subdiffusively in one dimension. This scenario combines the "anomalous kinetics" and "anomalous diffusion" problems, each of which leads to interesting dynamics separately and to even more interesting dynamics in combination. Our analysis is based on the fractional diffusion equation

    FARM COSTS AND EXPORTS

    Get PDF
    International Relations/Trade,

    Enhancement of stability in randomly switching potential with metastable state

    Full text link
    The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in the absence of white noise. The mean first passage time (MFPT) has a maximum at a finite value of white noise intensity. The analytical expression of MFPT in terms of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise is derived. The conditions for the NES phenomenon and the parameter region where the effect can be observed are obtained. The mean first passage time behaviours as a function of the mean flipping rate of the potential for unstable and metastable initial configurations are also analyzed. We observe the resonant activation phenomenon for initial metastable configuration of the potential profile.Comment: 9 pages, 5 figures. In press in "European Physical Journal B
    corecore