66 research outputs found
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Clioquinol Inhibits Zinc-Triggered Caspase Activation in the Hippocampal CA1 Region of a Global Ischemic Gerbil Model
Background: Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ), in the CA1 region of the gerbil hippocampus after transient global ischemia. Methodology/Principal Findings: The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p.) was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF) were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3,-9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils. Conclusions/Significance: The present study indicates that the neuroprotective effect of CQ is related to downregulation o
Use of Tissue Oxygenation Index and Fractional Tissue Oxygen Extraction as Non-Invasive Parameters for Cerebral Oxygenation
Chronic right ventricular pressure overload results in a hyperplastic rather than a hypertrophic myocardial response
Effect of the renin-angiotensinaldosterone system on the cardiac interstium in heart failure
- …
