2,520 research outputs found
Micromagnetic simulations of the magnetization precession induced by a spin polarized current in a point contact geometry
This paper is devoted to numerical simulations of the magnetization dynamics
driven by a spin-polarized current in extended ferromagnetic multilayers when a
point-contact setup is used. We present (i) detailed analysis of methodological
problems arising by such simulations and (ii) physical results obtained on a
system similar to that studied in Rippard et al., Phys. Rev. Lett., v. 92,
027201 (2004). We demonstrate that the usage of a standard Slonczewski
formalism for the phenomenological treatment of a spin-induced torque leads to
a qualitative disagreement between simulation results and experimental
observations and discuss possible reasons for this discrepancy.Comment: Invited paper on MMM2005 (San Jose); accepted for publication in J.
Applied Physic
Exponentially growing solutions in homogeneous Rayleigh-Benard convection
It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard
turbulence with periodic boundary conditions in all directions and a volume
forcing of the temperature field by a mean gradient, has a family of exact,
exponentially growing, separable solutions of the full non-linear system of
equations. These solutions are clearly manifest in numerical simulations above
a computable critical value of the Rayleigh number. In our numerical
simulations they are subject to secondary numerical noise and resolution
dependent instabilities that limit their growth to produce statistically steady
turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid
communication
Distribution of label spacings for genome mapping in nanochannels
In genome mapping experiments, long DNA molecules are stretched by confining
them to very narrow channels, so that the locations of sequence-specific
fluorescent labels along the channel axis provide large-scale genomic
information. It is difficult, however, to make the channels narrow enough so
that the DNA molecule is fully stretched. In practice its conformations may
form hairpins that change the spacings between internal segments of the DNA
molecule, and thus the label locations along the channel axis. Here we describe
a theory for the distribution of label spacings that explains the heavy tails
observed in distributions of label spacings in genome mapping experiments.Comment: 18 pages, 4 figures, 1 tabl
Variational bound on energy dissipation in turbulent shear flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in plane Couette
flow, bridging the entire range from low to asymptotically high Reynolds
numbers. Our variational bound exhibits structure, namely a pronounced minimum
at intermediate Reynolds numbers, and recovers the Busse bound in the
asymptotic regime. The most notable feature is a bifurcation of the minimizing
wavenumbers, giving rise to simple scaling of the optimized variational
parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz
file from [email protected]
A Bound on Mixing Efficiency for the Advection-Diffusion Equation
An upper bound on the mixing efficiency is derived for a passive scalar under
the influence of advection and diffusion with a body source. For a given
stirring velocity field, the mixing efficiency is measured in terms of an
equivalent diffusivity, which is the molecular diffusivity that would be
required to achieve the same level of fluctuations in the scalar concentration
in the absence of stirring, for the same source distribution. The bound on the
equivalent diffusivity depends only on the functional "shape" of both the
source and the advecting field. Direct numerical simulations performed for a
simple advecting flow to test the bounds are reported.Comment: 10 pages, 2 figures, JFM format (included
Phase space dynamics of overdamped quantum systems
The phase space dynamics of dissipative quantum systems in strongly condensed
phase is considered. Based on the exact path integral approach it is shown that
the Wigner transform of the reduced density matrix obeys a time evolution
equation of Fokker-Planck type valid from high down to very low temperatures.
The effect of quantum fluctuations is discussed and the accuracy of these
findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
Front Propagation and Diffusion in the A <--> A + A Hard-core Reaction on a Chain
We study front propagation and diffusion in the reaction-diffusion system A
A + A on a lattice. On each lattice site at most one A
particle is allowed at any time. In this paper, we analyze the problem in the
full range of parameter space, keeping the discrete nature of the lattice and
the particles intact. Our analysis of the stochastic dynamics of the foremost
occupied lattice site yields simple expressions for the front speed and the
front diffusion coefficient which are in excellent agreement with simulation
results.Comment: 5 pages, 5 figures, to appear in Phys. Rev.
- …
