43 research outputs found

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2

    Get PDF
    The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect and follow moving sine-wave gratings compared to their wild type counterparts

    Immunosuppression, interleukin-10 synthesis and apoptosis are induced in rats inoculated with Cryptococcus neoformans glucuronoxylomannan

    No full text
    Glucuronoxylomannan (GXM) is the major Cryptococcus neoformans capsular polysaccharide and represents the main virulence factor of this fungus. In in vitro studies we have demonstrated previously that this acidic and high-molecular-weight polysaccharide suppresses lymphoproliferation, modulates cytokine production and promotes apoptosis in spleen mononuclear (Spm) cells from rats. In this study we demonstrate that these phenomena also occur in vivo after the intracardiac inoculation of GXM into normal Wistar rats. The results of this study show suppression of the proliferative response Spm cells to concanavalin A (Con A) or heat-killed C. neoformans (HKCn) in the first 2 weeks after polysaccharide administration. In addition, increased levels of interleukin (IL)-10 were produced by Con A-stimulated Spm cells, coinciding with immunohistochemical GXM detection in the white pulp of spleen. In particular, high production of IL-10 with diminution of IL-2, interferon (IFN)-γ and tumour necrosis factor (TNF)-α synthesis were detected 14 days after GXM administration. In situ cell death detection by TdT-mediated biotin–dUTP nick-end labelling (TUNEL) reaction in sections of spleen, lung and liver demonstrates apoptosis in tissues with deposits of GXM. These data demonstrate the in vivo ability of GXM to modify cytokine synthesis by Spm cells and to promote host cell apoptosis

    Virtual Reality Exposure Therapy for Treatment of Dental Phobia

    No full text
    Virtual Reality Exposure Therapy (VRET) has gained in popularity as an effective treatment for anxiety disorders. The purpose of this article is to determine the applicability of VRET in the treatment of dental phobia of two patients. Two case examples of female dental patients, aged 56 and 24 years, who met the criteria for dental phobia according to the Phobia Checklist, illustrate the use of VRET in the dental setting. VRET that is used as a psychological treatment for dental fear and dental phobia can potentially be given by a non-specialist (for example dental assistant), thereby making it a cost-effective therapy for the treatment of dental phobia. CPD/Clinical Relevance: This article is the first of its kind to demonstrate Virtual Reality Exposure Therapy (VRET) in the treatment of dental anxiety

    Heat shock response relieves ER stress

    No full text
    Accumulation of misfolded protein in the endoplasmic reticulum (ER) causes stress. The unfolded protein response (UPR), a transcriptional induction pathway, is activated to relieve ER stress. Although UPR is not essential for viability, UPR-deficient cells are more sensitive to ER stress; ire1Δ cells cannot grow when challenged with tunicamycin or by overexpression of misfolded CPY*. In these cells, multiple functions are defective, including translocation, ER-associated degradation (ERAD), and ER-to-Golgi transport. We tested whether heat shock response (HSR) can relieve ER stress. Using a constitutively active Hsf1 transcription factor to induce HSR without temperature shift, we find that HSR rescues growth of stressed ire1Δ cells, and partially relieves defects in translocation and ERAD. Cargo-specific effects of constitutively active Hsf1 on ER-to-Golgi transport are correlated with enhanced protein levels of the respective cargo receptors. In vivo, HSR is activated by ER stress, albeit to a lower level than that caused by heat. Genomic analysis of HSR targets reveals that >25% have function in common with UPR targets. We propose that HSR can relieve stress in UPR-deficient cells by affecting multiple ER activities

    Functional classification of memory CD8+ T cells by CX3CR1 expression

    Get PDF
    Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX(3)CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX(3)CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX(3)CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX(3)CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory
    corecore