18 research outputs found

    Tongue immune compartment analysis reveals spatial macrophage heterogeneity

    Get PDF
    The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1(+) macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2(+) macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders

    Multicenter Prospective Cohort Study of the Patient-Reported Outcome Measures PRO-CTCAE and CAT EORTC QLQ-C30 in Major Abdominal Cancer Surgery (PATRONUS): A Student-Initiated German Medical Audit (SIGMA) Study

    No full text
    Background!#!The patient-reported outcomes (PRO) version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) and the computerized adaptive testing (CAT) version of the EORTC quality-of-life questionnaire QLQ-C30 have been proposed as new PRO measures in oncology; however, their implementation in patients undergoing cancer surgery has not yet been evaluated.!##!Methods!#!Patients undergoing elective abdominal cancer surgery were enrolled in a prospective multicenter study, and postoperative complications were recorded according to the Dindo-Clavien classification. Patients reported PRO data using the CAT EORTC QLQ-C30 and the PRO-CTCAE to measure 12 core cancer symptoms. Patients were followed-up for 6 months postoperatively. The study was carried out by medical students of the CHIR-Net SIGMA study network.!##!Results!#!Data of 303 patients were obtained and analyzed across 15 sites. PRO-CTCAE symptoms 'poor appetite', 'fatigue', 'exhaustion' and 'sleeping problems' increased after surgery and climaxed 10-30 days postoperatively. At 3-6 months postoperatively, no PRO-CTCAE symptom differed significantly to baseline. Patients reported higher 'social functioning' (p = 0.021) and overall quality-of-life scores (p < 0.05) 6 months after cancer surgery compared with the baseline level. There was a lack of correlation between postoperative complications or death and any of the PRO items evaluated. Feasibility endpoints for student-led research were met.!##!Conclusion!#!The two novel PRO questionnaires were successfully applied in surgical oncology. Postoperative complications do not affect health-reported quality-of-life or common cancer symptoms following major cancer surgery. The feasibility of student-led multicenter clinical research was demonstrated, but might be enhanced by improved student training

    The Calibration Units of KM3NeT

    No full text
    KM3NeT is a deep-sea infrastructure composed of two neutrino telescopes being deployed in the Mediterranean Sea : ARCA, near Sicily in Italy, designed for neutrino astronomy and ORCA, near Toulon in France, designed for neutrino oscillations. These two telescopes are 3D arrays of optical modules used to detect the Cherenkov radiation, which is a signature of charged particles created in the neutrino interaction and propagating faster than light in the sea water. To achieve the best performance for the event reconstruction in the telescopes, the exact location of the optical modules, affected by the sea current, must be known at any time and the timing resolution between optical modules must reach the nanosecond level. Moreover, the properties of the environment, in which the telescopes are deployed, such as temperature and salinity, are continuously monitored to allow best modelling of the acoustic signal propagation in the water. KM3NeT is going to deploy several dedicated Calibration Units hosting instruments dedicated to meet these calibration goals. The Calibration Base will host a Laser Beacon for time calibration and a long-baseline acoustic emitter and a hydrophone, which are part of the positioning system for the optical modules. Some of these Calibration Units will also be equipped with an Instrumentation Unit hosting environmental monitoring instruments. This poster describes all the devices, features and purposes of the Calibration Units, with a special emphasis on the first such unit that will be deployed on the ORCA site in 2021

    The Calibration Units of KM3NeT

    No full text
    KM3NeT is a deep-sea infrastructure composed of two neutrino telescopes being deployed in the Mediterranean Sea : ARCA, near Sicily in Italy, designed for neutrino astronomy and ORCA, near Toulon in France, designed for neutrino oscillations. These two telescopes are 3D arrays of optical modules used to detect the Cherenkov radiation, which is a signature of charged particles created in the neutrino interaction and propagating faster than light in the sea water. To achieve the best performance for the event reconstruction in the telescopes, the exact location of the optical modules, affected by the sea current, must be known at any time and the timing resolution between optical modules must reach the nanosecond level. Moreover, the properties of the environment, in which the telescopes are deployed, such as temperature and salinity, are continuously monitored to allow best modelling of the acoustic signal propagation in the water. KM3NeT is going to deploy several dedicated Calibration Units hosting instruments dedicated to meet these calibration goals. The Calibration Base will host a Laser Beacon for time calibration and a long-baseline acoustic emitter and a hydrophone, which are part of the positioning system for the optical modules. Some of these Calibration Units will also be equipped with an Instrumentation Unit hosting environmental monitoring instruments. This poster describes all the devices, features and purposes of the Calibration Units, with a special emphasis on the first such unit that will be deployed on the ORCA site in 2021

    KM3NeT/ARCA sensitivity to transient neutrino sources

    No full text
    The KM3NeT Collaboration is constructing a km3-volume neutrino telescope in the Mediterranean sea, ARCA (Astroparticle Research with Cosmics in the Abyss), for the detection and subsequent study of high-energy cosmic neutrinos.This telescope will be able to reconstruct the arrival direction of the neutrinos with a precision of ~0.1 degrees. The configuration of ARCA makes it sensitive to neutrinos in a wide energy range, from sub-TeV up to tens of PeV. Moreover, this detector has a large field of view and a very high duty cycle, allowing a full-sky (and all-flavours) searches. All these features make ARCA an excellent candidate to study transient neutrino sources. Atmospheric muons and neutrinos, produced by primary cosmic rays, constitute the main background for ARCA. This background can be several orders of magnitude higher than the expected cosmic neutrino flux. In this work, we introduce an event selection which reduces the background up to a negligible level inside the region of interest and within the search time window. The ARCA performance to detect a transient neutrino flux, including the effective area, sensitivity and discovery potential, are provided for a given test source, and for different time windows

    Comparison of the measured atmospheric muon rate with Monte Carlo simulations and sensitivity study for detection of prompt atmospheric muons with KM3NeT

    No full text
    The KM3NeT Collaboration has successfully deployed the first detection units of the next genera- tion undersea neutrino telescopes in the Mediterranean Sea at the two sites in Italy and in France. The data sample collected between December 2016 and January 2020 has been used to measure the atmospheric muon rate at two different depths under the sea level: 3.5 km with KM3NeT- ARCA and 2.5 km with KM3NeT-ORCA. Atmospheric muons represent an abundant signal in a neutrino telescope and can be used to test the reliability of the Monte Carlo simulation chain and to study the physics of extensive air showers caused by highly-energetic primary nuclei impinging the Earth’s atmosphere. At energies above PeV the contribution from prompt muons, created right after the first interaction in the shower, is expected to become dominant, however its existence has not yet been experimentally confirmed. In this talk, data collected with the first detection units of KM3NeT are compared to Monte Carlo simulations based on MUPAGE and CORSIKA codes. The main features of the simulation and reconstruction chains are presented. Additionally, the first results of the simulated signal from the prompt muon component for KM3NeT-ARCA and KM3NeT-ORCA obtained with CORSIKA are discussed

    Comparison of the measured atmospheric muon rate with Monte Carlo simulations and sensitivity study for detection of prompt atmospheric muons with KM3NeT

    No full text
    The KM3NeT Collaboration has successfully deployed the first detection units of the next genera- tion undersea neutrino telescopes in the Mediterranean Sea at the two sites in Italy and in France. The data sample collected between December 2016 and January 2020 has been used to measure the atmospheric muon rate at two different depths under the sea level: 3.5 km with KM3NeT- ARCA and 2.5 km with KM3NeT-ORCA. Atmospheric muons represent an abundant signal in a neutrino telescope and can be used to test the reliability of the Monte Carlo simulation chain and to study the physics of extensive air showers caused by highly-energetic primary nuclei impinging the Earth’s atmosphere. At energies above PeV the contribution from prompt muons, created right after the first interaction in the shower, is expected to become dominant, however its existence has not yet been experimentally confirmed. In this talk, data collected with the first detection units of KM3NeT are compared to Monte Carlo simulations based on MUPAGE and CORSIKA codes. The main features of the simulation and reconstruction chains are presented. Additionally, the first results of the simulated signal from the prompt muon component for KM3NeT-ARCA and KM3NeT-ORCA obtained with CORSIKA are discussed

    Indirect dark matter searches with neutrinos from the Galactic Centre region with the ANTARES and KM3NeT telescopes

    No full text
    An anomalous flux of neutrinos produced in hypothetical annihilations or decays of dark matter inside a source would produce a signal observable with neutrino telescopes. As suggested by observations, a conspicuous amount of dark matter is believed to accumulate in the centre of our Galaxy, which is in neat visibility for the Mediterranean underwater telescopes ANTARES and KM3NeT. Searches have been conducted with a maximum likelihood method to identify the presence of a dark matter signature in the neutrino flux measured by ANTARES. Results of all-flavour searches for WIMPs with masses from 50 GeV/c2 up to 100 TeV/c2 over the whole operation period from 2007 to 2020 are presented here. Alternative scenarios which propose a dark matter candidate in the heavy sector extensions of the Standard Model would produce a clear signature in the ANTARES telescope, that can exploit its view of the Galactic Centre up to high energies. The presentation of Galactic Centre searches is completed with ongoing analyses and future potential of the KM3NeT telescope, in phased construction in the Mediterranean Sea

    Search for nuclearites with the KM3NeT detector

    No full text
    Strange quark matter (SQM) is a hypothetical type of matter composed of almost equal quantities of up, down and strange quarks. In [1], Edward Witten presented the SQM as a denser and more stable matter that could represent the ground state of Quantum Chromodynamics (QCD). Massive SQM particles are called nuclearites. These particles could have been produced in violent astrophysical processes, such as neutron star collisions and could be present in the cosmic radiation. Nuclearites with masses greater than 1013 GeV and velocities of about 250 km/s (typical galactic velocities) could reach the Earth and interact with atoms and molecules of sea water within the sensitive volume of the deep-sea neutrino telescopes. The SQM particles can be detected with the KM3NeT telescope (whose first lines are already installed and taking data in the Mediterranean Sea) through the visible blackbody radiation generated along their path inside or near the instrumented area. In this work the results of a study using Monte Carlo simulations of down-going nuclearites are discussed

    KM3NeT/ARCA sensitivity to transient neutrino sources

    No full text
    The KM3NeT Collaboration is constructing a km3-volume neutrino telescope in the Mediterranean sea, ARCA (Astroparticle Research with Cosmics in the Abyss), for the detection and subsequent study of high-energy cosmic neutrinos.This telescope will be able to reconstruct the arrival direction of the neutrinos with a precision of ~0.1 degrees. The configuration of ARCA makes it sensitive to neutrinos in a wide energy range, from sub-TeV up to tens of PeV. Moreover, this detector has a large field of view and a very high duty cycle, allowing a full-sky (and all-flavours) searches. All these features make ARCA an excellent candidate to study transient neutrino sources. Atmospheric muons and neutrinos, produced by primary cosmic rays, constitute the main background for ARCA. This background can be several orders of magnitude higher than the expected cosmic neutrino flux. In this work, we introduce an event selection which reduces the background up to a negligible level inside the region of interest and within the search time window. The ARCA performance to detect a transient neutrino flux, including the effective area, sensitivity and discovery potential, are provided for a given test source, and for different time windows
    corecore