9,768 research outputs found

    Floristic Inventory of Woollen’s Gardens Nature Preserve, Indianapolis, Marion County, Indiana, USA, With Quantitative Vegetation Sampling of Permanent Plots in 2003 and 2016

    Get PDF
    Urban forest fragments face challenges to habitat quality due to small size, isolation from larger natural areas, and close association with anthropogenic disturbance. Monitoring changes in vegetation can inform management practices targeted at preserving biodiversity in the face of these threats. Woollen’s Gardens is a high-quality mesic upland forest preserve in the city of Indianapolis, Indiana, USA, with a beechmaple older-growth forest and a significant display of showy spring wildflowers. The entire preserve was inventoried and quantitative vegetation analysis along seven 100 m transects was conducted in 2003 and again in 2016 to track changes. Data from both years document a high-quality flora with few non-native plants. Floristic Quality Index values for native species, derived from Floristic Quality Assessment, were 50.2 in 2003 and 47.3 in 2016. Native mean C-values of 4.5 and 4.3 for each year support that the site is comparable to the highest quality natural areas in central Indiana. Values declined little when non-natives were included, indicating non-natives are having little negative impact on the flora. Although non-natives comprised less than 10% of the flora, 11 of the 16 species are considered invasive in Indiana. In 2003, invasive Amur honeysuckle (Lonicera maackii) was among species in plots with the highest relative importance value. In 2016, invasive wintercreeper (Euonymus fortunei) was among these species. Limited public access to Woollen’s Gardens minimizes human disturbance, but invasive species are a threat to vegetation quality. Continuation of eradication efforts is strongly recommended before populations of these non-natives become more difficult to control

    The Standard Model Fermion Spectrum From Complex Projective spaces

    Get PDF
    It is shown that the quarks and leptons of the standard model, including a right-handed neutrino, can be obtained by gauging the holonomy groups of complex projective spaces of complex dimensions two and three. The spectrum emerges as chiral zero modes of the Dirac operator coupled to gauge fields and the demonstration involves an index theorem analysis on a general complex projective space in the presence of topologically non-trivial SU(n)xU(1) gauge fields. The construction may have applications in type IIA string theory and non-commutative geometry.Comment: 13 pages. Typset using LaTeX and JHEP3 style files. Minor typos correcte

    Action and valence modulate choice and choice-induced preference change.

    Get PDF
    Choices are not only communicated via explicit actions but also passively through inaction. In this study we investigated how active or passive choice impacts upon the choice process itself as well as a preference change induced by choice. Subjects were tasked to select a preference for unfamiliar photographs by action or inaction, before and after they gave valuation ratings for all photographs. We replicate a finding that valuation increases for chosen items and decreases for unchosen items compared to a control condition in which the choice was made post re-evaluation. Whether choice was expressed actively or passively affected the dynamics of revaluation differently for positive and negatively valenced items. Additionally, the choice itself was biased towards action such that subjects tended to choose a photograph obtained by action more often than a photographed obtained through inaction. These results highlight intrinsic biases consistent with a tight coupling of action and reward and add to an emerging understanding of how the mode of action itself, and not just an associated outcome, modulates the decision making process

    On the "Universal" Quantum Area Spectrum

    Full text link
    There has been much debate over the form of the quantum area spectrum for a black hole horizon, with the evenly spaced conception of Bekenstein having featured prominently in the discourse. In this letter, we refine a very recently proposed method for calibrating the Bekenstein form of the spectrum. Our refined treatment predicts, as did its predecessor, a uniform spacing between adjacent spectral levels of 8π8\pi in Planck units; notably, an outcome that already has a pedigree as a proposed ``universal'' value for this intrinsically quantum-gravitational measure. Although the two approaches are somewhat similar in logic and quite agreeable in outcome, we argue that our version is conceptually more elegant and formally simpler than its precursor. Moreover, our rendition is able to circumvent a couple of previously unnoticed technical issues and, as an added bonus, translates to generic theories of gravity in a very direct manner.Comment: 7 Pages; (v2) now 9 full pages, significant changes to the text and material added but the general theme and conclusions are unchange

    A projective Dirac operator on CP^2 within fuzzy geometry

    Full text link
    We propose an ansatz for the commutative canonical spin_c Dirac operator on CP^2 in a global geometric approach using the right invariant (left action-) induced vector fields from SU(3). This ansatz is suitable for noncommutative generalisation within the framework of fuzzy geometry. Along the way we identify the physical spinors and construct the canonical spin_c bundle in this formulation. The chirality operator is also given in two equivalent forms. Finally, using representation theory we obtain the eigenspinors and calculate the full spectrum. We use an argument from the fuzzy complex projective space CP^2_F based on the fuzzy analogue of the unprojected spin_c bundle to show that our commutative projected spin_c bundle has the correct SU(3)-representation content.Comment: reduced to 27 pages, minor corrections, minor improvements, typos correcte

    Contextual novelty changes reward representations in the striatum

    Get PDF
    Reward representation in ventral striatum is boosted by perceptual novelty, although the mechanism of this effect remains elusive. Animal studies indicate a functional loop (Lisman and Grace, 2005) that includes hippocampus, ventral striatum, and midbrain as being important in regulating salience attribution within the context of novel stimuli. According to this model, reward responses in ventral striatum or midbrain should be enhanced in the context of novelty even if reward and novelty constitute unrelated, independent events. Using fMRI, we show that trials with reward-predictive cues and subsequent outcomes elicit higher responses in the striatum if preceded by an unrelated novel picture, indicating that reward representation is enhanced in the context of novelty. Notably, this effect was observed solely when reward occurrence, and hence reward-related salience, was low. These findings support a view that contextual novelty enhances neural responses underlying reward representation in the striatum and concur with the effects of novelty processing as predicted by the model of Lisman and Grace (2005)

    Bulk Emission of Scalars by a Rotating Black Hole

    Get PDF
    We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. On the other hand, the proportion of the total (i.e., bulk+brane) power that is emitted into the bulk decreases monotonically with the angular momentum. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane
    corecore