3 research outputs found
Hirota's Solitons in the Affine and the Conformal Affine Toda Models
We use Hirota's method formulated as a recursive scheme to construct complete
set of soliton solutions for the affine Toda field theory based on an arbitrary
Lie algebra. Our solutions include a new class of solitons connected with two
different type of degeneracies encountered in the Hirota's perturbation
approach. We also derive an universal mass formula for all Hirota's solutions
to the Affine Toda model valid for all underlying Lie groups. Embedding of the
Affine Toda model in the Conformal Affine Toda model plays a crucial role in
this analysis.Comment: 36 pages, LaTe
Release of trace elements during bioreductive dissolution of magnetite from metal mine tailings: Potential impact on marine environments
Adverse impacts of mine tailings on water and sediments quality are major worldwide environmental problems. Due to the environmental issues associated with the deposition of mine tailings on land, a controversial discussed alternative is submarine tailings disposal (STD). However, Fe(III) bioreduction of iron oxides (e.g., magnetite) in the tailings disposed might cause toxic effects on coastal environments due to the release of different trace elements (TEs) contained in the oxides. To study the extent and kinetics of magnetite bioreduction under marine conditions and the potential release of TEs, a number of batch experiments with artificial seawater (pH 8.2) and a marine microbial strain (Shewanella loihica) were performed using several magnetite ore samples from different mines and a mine tailings sample. The elemental composition of the magnetite determined in the tailings showed relatively high amounts of TEs (e.g., Mn, Zn, Co) compared with those of the magnetite ore samples (LA-ICP-MS and EMPA analyses). The experiments were conducted at 10 °C in the dark for up to 113 days. Based on the consumption of lactate and production of acetate and aqueous Fe(II) over time, the magnitude of Fe(III) bioreduction was calculated using a geochemical model including Monod kinetics. Model simulations reproduced the release of iron and TEs observed throughout the experiments, e.g., Mn (up to 203 μg L−1), V (up to 79 μg L−1), As (up to 17 μg L−1) and Cu (up to 328 μg L−1), suggesting a potential contamination of pore water by STD. Therefore, the results of this study can help to better evaluate the potential impacts of STD
Dissimilatory bioreduction of iron (III) oxides by Shewanella loihica under marine sediment conditions
Shewanella is a genus of marine bacteria capable of dissimilatory iron reduction (DIR). In the context of deep-sea mining activities or submarine mine tailings disposal, dissimilatory iron reducing bacteria may play an important role in biogeochemical reactions concerning iron oxides placed on the sea bed. In this study, batch experiments were performed to evaluate the capacity of Shewanella loihica PV-4 to bioreduce different iron oxides (ferrihydrite, magnetite, goethite and hematite) under conditions similar to those in anaerobic sea sediments. Results showed that bioreduction of structural Fe(III) via oxidation of labile organic matter occurred in all these iron oxides. Based on the aqueous Fe (II) released, derived Fe(II)/acetate ratios and bioreduction coefficients seem to be only up to about 4% of the theoretical ones, considering the ideal stoichiometry of the reaction. A loss of aqueous Fe (II) was caused by adsorption and mineral transformation processes. Scanning electron microscope images showed that Shewanella lohica was attached to the Fe(III)-oxide surfaces during bioreduction. Our findings suggest that DIR of Fe(III) oxides from mine waste placed in marine environments could result in adverse ecological impacts such as liberation of trace metals in the environment
