4,191 research outputs found

    A Lower-Limit Flux for the Extragalactic Background Light

    Full text link
    ... A strict lower-limit flux for the evolving extragalactic background light (and in particular the cosmic infrared background) has been calculated up to redshift of 5. The computed flux is below the existing upper limits from direct observations, and in agreement with all existing limits derived from very-high energy gamma-ray observations. The corrected spectra are still in agreement with simple theoretical predictions. The derived strict lower-limit EBL flux is very close to the upper limits from gamma-ray observations. This is true for the present day EBL but also for the diffuse flux at higher redshift. If future detections of high redshift gamma-ray sources require a lower EBL flux than derived here, the physics assumptions used to derive the upper limits have to be revised. The lower-limit EBL model is not only needed for absorption features in AGN and other gamma-ray sources but is also essential when alternative particle processes are tested, which could prevent the high energy gamma-rays from being absorbed. It can also be used for a quaranteed interaction of cosmic-ray particles. The model is available online.Comment: 12 pages, 6 figures, accepted by A&

    The Habitable Zone and Extreme Planetary Orbits

    Get PDF
    The Habitable Zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the Habitable Zone concept, its application to our own Solar System, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain lifebearing properties depending upon the percentage of the total orbit which is spent within the Habitable Zone.Comment: 22 pages, 5 figures, accepted for publication in Astrobiolog

    A strict lower-limit EBL: Applications on gamma-ray absorption

    Full text link
    A strict lower limit flux for the extragalactic background light from ultraviolet to the far-infrared photon energies is presented. The spectral energy distribution is derived using an established EBL model based on galaxy formation. The model parameters are chosen to fit the lower limit data from number count observations in particular recent results by the SPITZER infrared space telescope. A lower limit EBL model is needed to calculate guaranteed absorption due to pair production in extragalactic gamma-ray sources as in TeV blazars.Comment: Comments: 4 pages, 2 figures, submitted to proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    MicroRNA-433 Dampens Glucocorticoid Receptor Signaling, Impacting Circadian Rhythm and Osteoblastic Gene Expression

    Get PDF
    FUNDING This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health [AR44877]; the National Institutes for Dental and Craniofacial Research [5T90DE21989]; a Grant-in-Aid award from the American Society for Bone and Mineral Research; the UConn Health Center Research Advisory council; and the Center for Molecular Medicine at UConn Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Peer reviewedPublisher PD

    Field theoretic calculation of the surface tension for a model electrolyte system

    Full text link
    We carry out the calculation of the surface tension for a model electrolyte to first order in a cumulant expansion about a free field theory equivalent to the Debye-H\"uckel approximation. In contrast with previous calculations, the surface tension is calculated directly without recourse to integrating thermodynamic relations. The system considered is a monovalent electrolyte with a region at the interface, of width h, from which the ionic species are excluded. In the case where the external dielectric constant epsilon_0 is smaller than the electrolyte solution's dielectric constant epsilon we show that the calculation at this order can be fully regularized. In the case where h is taken to be zero the Onsager-Samaras limiting law for the excess surface tension of dilute electrolyte solutions is recovered, with corrections coming from a non-zero value of epsilon_0/epsilon.Comment: LaTeX, 14 pages, 3 figures, 1 tabl

    325-MHz observations of the ELAIS-N1 field using the Giant Metrewave Radio Telescope

    Full text link
    We present observations of the European Large-Area {\it ISO} Survey-North 1 (ELAIS-N1) at 325 MHz using the Giant Metrewave Radio Telescope (GMRT), with the ultimate objective of identifying active galactic nuclei and starburst galaxies and examining their evolution with cosmic epoch. After combining the data from two different days we have achieved a median rms noise of 40μ\approx40 \muJy beam1^{-1}, which is the lowest that has been achieved at this frequency. We detect 1286 sources with a total flux density above 270μ\approx270 \muJy. In this paper, we use our deep radio image to examine the spectral indices of these sources by comparing our flux density estimates with those of Garn et al. at 610 MHz with the GMRT, and surveys with the Very Large Array at 1400 MHz. We attempt to identify very steep spectrum sources which are likely to be either relic sources or high-redshift objects as well as inverted-spectra objects which could be Giga-Hertz Peaked Spectrum objects. We present the source counts, and report the possibility of a flattening in the normalized differential counts at low flux densities which has so far been reported at higher radio frequencies.Comment: The paper contains 15 figures and 5 tables. Accepted for publication in MNRA

    Physical properties of a very diffuse HI structure at high Galactic latitude

    Get PDF
    The main goal of this analysis is to present a new method to estimate the physical properties of diffuse cloud of atomic hydrogen observed at high Galactic latitude. This method, based on a comparison of the observations with fractional Brownian motion simulations, uses the statistical properties of the integrated emission, centroid velocity and line width to constrain the physical properties of the 3D density and velocity fields, as well as the average temperature of HI. We applied this method to interpret 21 cm observations obtained with the Green Bank Telescope of a very diffuse HI cloud at high Galactic latitude located in Firback North 1. We first show that the observations cannot be reproduced solely by highly-turbulent CNM type gas and that there is a significant contribution of thermal broadening to the line width observed. To reproduce the profiles one needs to invoke two components with different average temperature and filling factor. We established that, in this very diffuse part of the ISM, 2/3 of the column density is made of WNM and 1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic (~1) and the unstable phase is definitely sub-sonic (~0.3). The density contrast (i.e., the standard deviation relative to the mean of density distribution) of both components is close to 0.8. The filling factor of the WNM is 10 times higher that of the unstable gas, which has a density structure closer to what would be expected for CNM gas. This field contains a signature of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&

    The Cosmic Far-Infrared Background Buildup Since Redshift 2 at 70 and 160 microns in the COSMOS and GOODS fields

    Get PDF
    The Cosmic Far-Infrared Background (CIB) at wavelengths around 160 {\mu}m corresponds to the peak intensity of the whole Extragalactic Background Light, which is being measured with increasing accuracy. However, the build up of the CIB emission as a function of redshift, is still not well known. Our goal is to measure the CIB history at 70 {\mu}m and 160 {\mu}m at different redshifts, and provide constraints for infrared galaxy evolution models. We use complete deep Spitzer 24 {\mu}m catalogs down to about 80 {\mu}Jy, with spectroscopic and photometric redshifts identifications, from the GOODS and COSMOS deep infrared surveys covering 2 square degrees total. After cleaning the Spitzer/MIPS 70 {\mu}m and 160 {\mu}m maps from detected sources, we stacked the far-IR images at the positions of the 24 {\mu}m sources in different redshift bins. We measured the contribution of each stacked source to the total 70 and 160 {\mu}m light, and compare with model predictions and recent far-IR measurements made with Herschel/PACS on smaller fields. We have detected components of the 70 and 160 {\mu}m backgrounds in different redshift bins up to z ~ 2. The contribution to the CIB is maximum at 0.3 <= z <= 0.9 at 160{\mu}m (and z <= 0.5 at 70 {\mu}m). A total of 81% (74%) of the 70 (160) {\mu}m background was emitted at z < 1. We estimate that the AGN relative contribution to the far-IR CIB is less than about 10% at z < 1.5. We provide a comprehensive view of the CIB buildup at 24, 70, 100, 160 {\mu}m. IR galaxy models predicting a major contribution to the CIB at z < 1 are in agreement with our measurements, while our results discard other models that predict a peak of the background at higher redshifts. Our results are available online http://www.ias.u-psud.fr/irgalaxies/ .Comment: Accepted in Astronomy & Astrophysic

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions
    corecore